K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2016

\(A=\left(\frac{1}{x+2}+\frac{1}{x-2}\right)\times\frac{x-2}{x}\)

a) ĐKXĐ : \(x\ne0;x\ne-2;x\ne2\)

b) Rút gọn:

\(A=\frac{x-2+x+2}{\left(x+2\right)\left(x-2\right)}\times\frac{x-2}{x}=\frac{2}{x+2}\)

c) Tìm x>0 để: \(A>\frac{1}{2}\Rightarrow\frac{2}{x+2}>\frac{1}{2}\)Do x>0 nên x + 2 >0 => x + 2 <4 =>x < 2.

Vậy, với x dương để A > 1/2 thì x<2 

d) A nguyên thì 2 chia hết cho x+2 hay x+2 thuộc U(2) = {-2;-1;1;2)

  • x + 2 = -2 => x = -4
  • x + 2 = -1 => x = -3
  • x + 2 = 1 => x = -1
  • x + 2 = 2 => x = 0

Có 4 giá trị nguyên của x là: -4; -3; -1; 0 để A có giá trị nguyên.

19 tháng 6 2016

điều kiện xđ:

x khác ( -2,2,0)

A=\(\left(\frac{1}{x+2}+\frac{1}{x-2}\right):x-\frac{2}{x}\)

=\(\left(\frac{x-2+x+2}{x^2-4}\right):x-\frac{2}{x}\)

=\(\frac{2}{x^2-4}-\frac{2}{x}=\frac{2x-2x^2+8}{x\left(x^2-4\right)}\)

19 tháng 6 2016

cảm ơn bạn đã đóng góp câu trả lời...ahihi

 

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

8 tháng 12 2016

a, x≠-3, x≠2

b, A= \(\frac{x-4}{x-2}\)

8 tháng 12 2016

Cái biểu thức A ban ghi rõ thì mình mới giải được chứ , ghi như thế ai hiểu mà giải.

29 tháng 6 2017

a.ĐKXĐ \(\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)

A=\(\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)

=\(\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

=\(\frac{x-4}{x-2}\)

b. Để A >0  thì \(\frac{x-4}{x-2}\) >0 \(\Rightarrow\orbr{\begin{cases}x< 2\\x>4\end{cases}}\)

Kết hợp ĐK thì \(\orbr{\begin{cases}x< 2,x\ne-3\\x>4\end{cases}}\)

c. \(A=\frac{x-4}{x-2}=1+\frac{-2}{x-2}\)

Để A nguyên thì \(x-2\inƯ\left(-2\right)=\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{0,1,3,4\right\}\)

Khi thay vào A, để A dương thì \(x\in\left\{0;1\right\}\)

Vậy để A nguyên dương thì \(x\in\left\{0;1\right\}\)

29 tháng 6 2017

Câu c, có thể nói kết hợp với điều kiện giải được trong câu b, ta tìm được \(x\in\left\{0;1\right\}\)

11 tháng 3 2020

ĐKXĐ:\(x\ne\pm2;x\ne-3;x\ne0\)

\(P=1+\frac{x-3}{x^2+5x+6}\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left(\frac{2}{x-2}-\frac{x}{x^2-4}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{2x+4-x-x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\frac{8\left(x-3\right)}{\left(x+2\right)^2\left(x+3\right)\left(x-2\right)}\)

Đề sai à ??

28 tháng 6 2015

đk: x khác -3; 2

b)\(A=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}=\frac{\left(x+3\right)\left(x-4\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)

c) A=3/4 <=> \(\frac{x-4}{x-2}=\frac{3}{4}\Leftrightarrow4x-16=3x-6\) tự giải pt này ra x nha

d) \(A=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)=> A thuộc Z <=> 2/x-2 thuộc Z( 1 thuộc Z rồi) => x-2 thuộc Ư(2) <=> x-2 thuộc (+-1;+-2)

x-2 1-12-2
x3(t/m)1(t/m)4(t/m)0(t/m)

 

=> Vậy..

e) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=+-3\)thay lần lượt vào A rồi tính nha

 

12 tháng 8 2021

Trả lời:

a,  \(ĐK:x\ne\frac{1}{3}\)

 \(A=\frac{3x+1-1}{1-3x}:\frac{3x-9x^2}{3x-1}=\frac{3x}{1-3x}\cdot\frac{3x-1}{3x-9x^2}=\frac{3x.\left(3x-1\right)}{\left(1-3x\right)\left(3x-9x^2\right)}=\frac{3x\left(3x-1\right)}{\left(1-3x\right)3x\left(1-3x\right)}\)

\(=\frac{3x\left(3x-1\right)}{3x\left(1-3x\right)^2}=\frac{3x\left(3x-1\right)}{3x\left(3x-1\right)^2}=\frac{1}{3x-1}\)

b, \(5x^2+3x=0\)

\(\Leftrightarrow x\left(5x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}}\)

Thay x = 0 vào A, ta có :

\(A=\frac{1}{3.0-1}=\frac{1}{-1}=-1\)

Thay x = - 3/5 vào A, ta có :

\(A=\frac{1}{3.\left(-\frac{3}{5}\right)-1}=\frac{1}{-\frac{9}{5}-1}=\frac{1}{-\frac{14}{5}}=-\frac{5}{14}\)

c, \(A=\frac{x}{x-1}\)

\(\Leftrightarrow\frac{1}{3x-1}=\frac{x}{x-1}\)\(\left(ĐK:x\ne\frac{1}{3};x\ne1\right)\)

\(\Leftrightarrow\frac{x-1}{\left(3x-1\right)\left(x-1\right)}=\frac{x\left(3x-1\right)}{\left(3x-1\right)\left(x-1\right)}\)

\(\Rightarrow x-1=3x^2-x\)

\(\Leftrightarrow3x^2-x-x+1=0\)

\(\Leftrightarrow3x^2-2x+1=0\)

\(\Leftrightarrow3\left(x^2-\frac{2}{3}x+\frac{1}{3}\right)=0\)

\(\Leftrightarrow x^2-\frac{2}{3}x+\frac{1}{3}=0\)

\(\Leftrightarrow x^2-2.x.\frac{1}{3}+\frac{1}{9}+\frac{2}{9}=0\)

\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2+\frac{2}{9}=0\)

\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=-\frac{2}{9}\) (vô lí)

Vậy không tìm được x thỏa mãn đề bài.

d, \(\frac{6}{A}=\frac{6}{\frac{1}{3x-1}}=6\left(3x-1\right)=18x-6\)

Vậy x thuộc Z thì 6/A thuộc Z