K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

=>a^2+b^2+c^2+3-2a-2b-2c=0

=>(a^2-2a+1)+(b^2-2b+1)+(c62-2c+1)=0

=>(3 hằng dẳng thức của a-1 b-1 c-1)

Suy ra (a-1)^2=0

và (b-1)^2=0

và(c-1)^2=0

thay vào A suy ra A=0

cố gắng trình bày lại nhé bạn!

10 tháng 2 2019

\(5a^2+5b^2+8ab-2a+2b+2=0\)

\(\Leftrightarrow4a^2+4b^2+8ab+a^2-2a+1+b^2-2b+1=0\)

\(\Leftrightarrow\left(2a+2b\right)^2+\left(a-1\right)^2+\left(b+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2a+2b=0\\a-1=0\\b+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a\cdot1+2\left(-1\right)=0\left(tm\right)\\a=1\\b=-1\end{cases}}}\)

Thay a, b vào B ta được :

\(B=\left(1-1\right)^{2018}+\left(1-2\right)^{2019}+\left(-1+1\right)^{2020}\)

\(B=0^{2018}+\left(-1\right)^{2019}+0^{2020}\)

\(B=-1\)

10 tháng 2 2019

Dòng 2 là \(+2b\)nhé mình bấm lộn :)

Bài 2: Rút gọn biểu thức sau một cách nhanh nhất:

a, A=(6x-2)2+(2-5x)2+2.(6x-2)(2-5x)

\(=\left(6x-2\right)^2+2\left(6x-2\right)\left(2-5x\right)+\left(2-5x\right)^2\)

\(\text{(Hằng đẳng thức số 2)}\)

\(=\left(6x-2+2-5x\right)\)

\(=x\)

\(B=\left(2a^2+2a+1\right)\left(2a^2-2a+1\right)-\left(2a^2+1\right)^2\)

\(=\left(2a^2+1+2a\right)\left(2a^2+1-2a\right)-\left(2a^2+1\right)^2\)

\(=\left(2a^2+1\right)^2-4a^2-\left(2a^2+1\right)^2\)

\(=-4a^2\)

16 tháng 7 2019

\(A=x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1=3^2-4.3+1=9-12+1=-3+1=-2\)

16 tháng 7 2019

2) Dạng này chỉ có nước rút gọn đi thôi:v

Rút gọn đi ta được: \(A=9\left(a^2+b^2+c^2\right)=9m\)

28 tháng 2 2020

Theo đề bài ta có :

\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)

\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)

Thay \(x=1\) vào (1) ta có :

\(F\left(1\right)=-4\)

\(\Leftrightarrow1+a+b+c=-4\)

\(\Leftrightarrow a+b+c=-5\)

Thay \(x=-2\) vào (2) ta có :

\(F\left(-2\right)=5\)

\(\Leftrightarrow-8+4a-2b+c=5\)

\(\Leftrightarrow4a-2b+c=13\)

Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)

....

18 tháng 3 2016

1) a2 +b2 +c2>= ab +bc +ca <=> 2a2 +2b2 +2c2 >=2ab +2bc +2ca <=> 2a2 +2b2 +2c2 -2ab -2bc -2ca >= 0

<=> (a -b)2 +(b -c)2 + (c -a)>= 0 (bđt đúng với mọi a, b, c)

2) Áp dụng bđt Cauchy với a, b, c > 0 ta có :

\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc.ab}{ac}}=2b\)

tương tự : \(\frac{ab}{c}+\frac{ca}{b}\ge2a\)\(\frac{ca}{b}+\frac{bc}{a}\ge2c\)

Cộng từng vế 3 bđt trên suy ra đpcm

3) Từ gt a a +b =c => a +b -c =0 => (a +b -c)= 0 => a2 +b2 +c2 +2ab -2bc -2ca = 0

=> a2 +b2 +c2 = 2bc + 2ca -2ab => (a2 +b2 +c2)2 = (2bc +2ca -2ab)2 

=> a4 +b4 +c4 +2a2b2 +2b2c2 +2c2a2 = 4b2c2 +4c2a2 +4a2b2 +4abc2-4a2bc - 4ab2c

=> a4 +b4 +c4 -2a2b2 -2b2c2 -2c2a2 = 4abc(c -a -b) = 4abc.0 =0

Vậy a4 +b4 +c4 = 2a2b2 +2b2c2 +2c2a2

18 tháng 3 2016

Mọi người giúp  mình bài nay với. Mai mình nộp bài mà mình lại học toán hơi kém tí.  Thanhks trước. 

Bài 1: cho a, b, c thuộc  R.

Chứng minh a2 + b+ c2  >=  ab+ac+bc

Bài 2:cho a, b, c >0.

 Chứng minh (bc/a)+(ac/b)+(ab/c)>= a+b+c

Bài 3: cho a, b, c thoả mãn a+b=c.  

Chứng  minh  a +b4 +c =2a2b2 +2b2c2 + 2a2c2