K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

           \(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

             \(.\)                   \(.\)

             \(.\)

             \(.\)                    \(.\)  

             \(.\)                    \(.\)

         \(\frac{1}{2013^2}< \frac{1}{2012\cdot2013}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{2013^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}\)

Mà \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}=1-\frac{1}{2013}< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2013^2}< 1\)

Nhớ k cho mình nhé!

Chúc các bạn học tốt!

10 tháng 3 2017

mình giải ở đè trước rồi

29 tháng 4 2018

mình đánh thiếu đề bài ở cuối còn có ''So sánh A với \(-\frac{1}{2}\)

1 tháng 8 2016

bạn ơi đề sai rồi bài này mình làm ở lớp rồi A<2

27 tháng 2 2017

không thể cm

14 tháng 3 2017

mai tớ cho bài này nhé quen bài này ở lớp zùi

25 tháng 7 2016

1/1+2  +  1/+1+2+3  +  ...  + 1/1+2+3+...+2014

= 1/(1+2).2:2  +  1/(1+3).3:2  +   ...  + 1/(1 + 2014).2014:2

= 2/2.3  +  2/3.4  +  ...  + 2/2014.2015

= 2.(1/2.3  +  1/3.4  +  ...  + 1/2014.2015)

= 2.(1/2  -  1/3  +  1/3  -  1/4  +  ... + 1/2014  -  1/2015)

= 2.(1/2 - 1/2015)

= 2.1/2 - 2.1/2015

= 1 - 2/2015

= 2013/2015

26 tháng 7 2016

1/1+2  +  1/+1+2+3  +  ...  + 1/1+2+3+...+2014

= 1/(1+2).2:2  +  1/(1+3).3:2  +   ...  + 1/(1 + 2014).2014:2

= 2/2.3  +  2/3.4  +  ...  + 2/2014.2015

= 2.(1/2.3  +  1/3.4  +  ...  + 1/2014.2015)

= 2.(1/2  -  1/3  +  1/3  -  1/4  +  ... + 1/2014  -  1/2015)

= 2.(1/2 - 1/2015)

= 2.1/2 - 2.1/2015

= 1 - 2/2015

= 2013/2015