Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = 1 + 2 + 3 + ... + 99 + 100
A có tất cả số hạng là:
(100 - 1) : 1 + 1 = 100 (số hạng)
Đáp số: 100 số hạng
Ta có :
(+) A chia hết cho 7 vì mọi số hạng của A đều chia hết cho 7 (1)
(+) \(A=7\left(1+7^2\right)+7^5\left(1+7^2\right)+....+7^{2014}\left(1+7^2\right)\)
\(\Leftrightarrow A=7.50+7^5.50+....+7^{2014}.50\)
<=> A chia hết cho 5 (2)
Mà (5;7)=1 (3)
Từ (1) ; (2) và 3
=> A chia hết cho 5.7 = 35
Ta có:
\(A=2^1+2^2+2^3+...+2^{100}\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow A.\left(2-1\right)=2^2+2^3+2^4+...+2^{101}-2^1-2^2-2^3+...+2^{100}\)
\(\Rightarrow A=\left(2^2-2^2\right)+\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2^{100}-2^{100}\right)+\left(2^{101}-2^1\right)\)
\(\Rightarrow A=2^{101}-2\Leftrightarrow A=2^x-2\Leftrightarrow x=101\)
@Phúc Trần Tấn | Em biết làm ý A rồi nhưng không biết làm ý B.!!
a) 3.32.33.....3100=31+2+...+100
b)x.x3.x5.....x49=x1+3+5+...+49
Ta có: \(100^{2013}=100.100....100=\overline{100...}\)(Chữ số đầu là 1, còn lại là 0)
\(\Rightarrow100^{2013}+2=\overline{100...2}\).
Ta thấy \(\overline{100...2}\)có tổng các số hạng là 3. Mà \(3⋮3\)(Hiển nhiên)
\(\Rightarrow\overline{100...2}⋮3\Rightarrow100^{2013}+2⋮3\)(đpcm).