Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác BAH và tam giác CAH, có:
AB = AC ( tam giác ABC cân tại A)
Góc AHB = góc AHC = 90 độ (AH vuông góc với BC)
AH chung
=> tam giác BAH = tam giác CAH (cạnh huyền- cạnh góc vuông)
=> BH = CH ( 2 cạnh tương ứng)
b) Ta có: tam giác ABH = tam giác ACH ( theo phần a)
=> góc BAH = góc CAH (2 góc tương ứng) hay góc EAH = góc FAH
Xét tam giác EAH và tam giác FAH, có
góc AEH = góc AFH = 90 độ(HE vuông góc với AB, HF vuông góc với AC)
AH chung
góc EAH = góc FAH (chứng minh trên)
=> tam giác EAH = tam giác FAH (cạnh huyền- góc nhọn)
=> HE = HF ( 2 cạnh tương ứng)
c) Xét tam giác AHB vuông tại H
Áp dụng định lí pytago vào tam giác AHB vuông tại H, ta có:
\(AH^2+BH^2=AB^2\)
Thay số: \(AH^2+4^2=5^2\)
=> \(AH^2=5^2-4^2\)
\(AH^2\) = 9
=> AH = 3(cm)
d) Ta có: tam giác AEH = tam giác AFH (theo phần b)
=> AE = AF ( 2 cạnh tương ứng)
=> tam giác AEF cân tại A
=> góc AEF = góc AFE = (180 độ - góc A) : 2 (1)
mà ta lại có tam giác ABC cân tại A
=> góc ABC = góc ACB = ( 180 độ - góc A) :2 (2)
Từ (1) và (2)
=> Góc AEF = góc ABC
mà hai góc này ở vị trí đồng vị => EF // BC
Chúc bạn học tốt nha
b
AH vuông góc với BC
BC song song với EK
=>AH vuông góc với EK
Ta thấy 2 góc bằng nhau (cùng bằng \(60^0\)) mà 2 góc này nằm ở vị trí so le trong
\(\Rightarrow\)a//b