Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=10^2-6^2=64\)
=>\(AH=\sqrt{64}=8\left(cm\right)\)
b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của góc BAC
c: Ta có: ΔAHB=ΔAHC
=>BH=CH
Xét ΔBMH vuông tại M và ΔCNH vuông tại N có
BH=CH
\(\widehat{B}=\widehat{C}\)
Do đó: ΔBMH=ΔCNH
d: Xét ΔABO vuông tại B và ΔACO vuông tại C có
AO chung
AB=AC
Do đó: ΔABO=ΔACO
=>OB=OC
=>ΔOBC cân tại O
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: AH=12cm
c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
d: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a) Xét tam giác ABC cân tại A có AH _|_ BC
=> AH là đường cao của tam giác ABC
Mà trong tam giác cân đường trung tuyến trùng với đường cao
=> AH là đường trung tuyến của tam giác ABC
=> BH=CH (đpcm)
b) Có tam giác ABC cân tại A => \(\widehat{B}=\widehat{C}\)
Xét tam giác EBH và tam giác FCH có:
CH=BH (cmt)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
\(\widehat{HEB}=\widehat{HFC}=90^o\)
\(\Rightarrow\Delta EBH=\Delta FCH\left(ch-gh\right)\)
=> HE=HF (2 cạnh tương ứng) (đpcm)
c) Xét tam giác ABH có \(\widehat{H}\)=90o
=> Tam giác ABH vuông tại H
Áp dụng định lý Pytago vào tam giác ABH ta có:
\(BH^2+AH^2=AB^2\)
\(\Leftrightarrow AB=\sqrt{5^2-4^2}=\sqrt{25-16}=\sqrt{9}=3\left(cm\right)\left(AB>0\right)\)
a) xét tam giác BAH và tam giác CAH, có:
AB = AC ( tam giác ABC cân tại A)
Góc AHB = góc AHC = 90 độ (AH vuông góc với BC)
AH chung
=> tam giác BAH = tam giác CAH (cạnh huyền- cạnh góc vuông)
=> BH = CH ( 2 cạnh tương ứng)
b) Ta có: tam giác ABH = tam giác ACH ( theo phần a)
=> góc BAH = góc CAH (2 góc tương ứng) hay góc EAH = góc FAH
Xét tam giác EAH và tam giác FAH, có
góc AEH = góc AFH = 90 độ(HE vuông góc với AB, HF vuông góc với AC)
AH chung
góc EAH = góc FAH (chứng minh trên)
=> tam giác EAH = tam giác FAH (cạnh huyền- góc nhọn)
=> HE = HF ( 2 cạnh tương ứng)
c) Xét tam giác AHB vuông tại H
Áp dụng định lí pytago vào tam giác AHB vuông tại H, ta có:
\(AH^2+BH^2=AB^2\)
Thay số: \(AH^2+4^2=5^2\)
=> \(AH^2=5^2-4^2\)
\(AH^2\) = 9
=> AH = 3(cm)
d) Ta có: tam giác AEH = tam giác AFH (theo phần b)
=> AE = AF ( 2 cạnh tương ứng)
=> tam giác AEF cân tại A
=> góc AEF = góc AFE = (180 độ - góc A) : 2 (1)
mà ta lại có tam giác ABC cân tại A
=> góc ABC = góc ACB = ( 180 độ - góc A) :2 (2)
Từ (1) và (2)
=> Góc AEF = góc ABC
mà hai góc này ở vị trí đồng vị => EF // BC
Chúc bạn học tốt nha
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔABH=ΔACH
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
b: Xét ΔECB có
CA là trung tuyến
CA=BE/2
=>ΔECB vuông tại C
Xét tứ giác ADCH có
góc ADC=góc AHC=góc DCH=90 độ
=>ADCH là hcn
=>AD vuông góc AH