K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=10^2-6^2=64\)

=>\(AH=\sqrt{64}=8\left(cm\right)\)

b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giác của góc BAC

c: Ta có: ΔAHB=ΔAHC

=>BH=CH

Xét ΔBMH vuông tại M và ΔCNH vuông tại N có

BH=CH

\(\widehat{B}=\widehat{C}\)

Do đó: ΔBMH=ΔCNH

d: Xét ΔABO vuông tại B và ΔACO vuông tại C có

AO chung

AB=AC

Do đó: ΔABO=ΔACO

=>OB=OC

=>ΔOBC cân tại O

16 tháng 3 2022

nhanh giúp mình với đang cần gấp

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: AH=12cm

c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔANH

Suy ra: AM=AN

d: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

6 tháng 5 2020

Không biết sao nó ra mấy cái \\n\\n, bạn bỏ qua giúp mình.

\n
6 tháng 5 2020

\"Chương

\n
7 tháng 4 2020

a) Xét tam giác ABC cân tại A có AH _|_ BC

=> AH là đường cao của tam giác ABC

Mà trong tam giác cân đường trung tuyến trùng với đường cao

=> AH là đường trung tuyến của tam giác ABC

=> BH=CH (đpcm)

b) Có tam giác ABC cân tại A => \(\widehat{B}=\widehat{C}\)

Xét tam giác EBH và tam giác FCH có:

CH=BH (cmt)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

\(\widehat{HEB}=\widehat{HFC}=90^o\)

\(\Rightarrow\Delta EBH=\Delta FCH\left(ch-gh\right)\)

=> HE=HF (2 cạnh tương ứng) (đpcm)

c) Xét tam giác ABH có \(\widehat{H}\)=90o

=> Tam giác ABH vuông tại H

Áp dụng định lý Pytago vào tam giác ABH ta có:

\(BH^2+AH^2=AB^2\)

\(\Leftrightarrow AB=\sqrt{5^2-4^2}=\sqrt{25-16}=\sqrt{9}=3\left(cm\right)\left(AB>0\right)\)

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

8 tháng 4 2020

a) xét  tam giác BAH và tam giác CAH, có:

AB = AC ( tam giác ABC cân tại A)

Góc AHB = góc AHC = 90 độ (AH vuông góc với BC)

AH chung

=> tam giác BAH = tam giác CAH (cạnh huyền- cạnh góc vuông)

=> BH = CH ( 2 cạnh tương ứng)

b) Ta có: tam giác ABH = tam giác ACH ( theo phần a)

=> góc BAH = góc CAH (2 góc tương ứng) hay góc EAH = góc FAH

Xét tam giác  EAH và tam giác FAH, có

góc AEH = góc AFH = 90 độ(HE vuông góc với AB, HF vuông góc với AC)

AH chung

góc EAH = góc FAH (chứng minh trên)

=> tam giác EAH = tam giác FAH (cạnh huyền- góc nhọn)

=> HE = HF ( 2 cạnh tương ứng)

c) Xét tam giác AHB vuông tại H

Áp dụng định lí pytago vào tam giác AHB vuông tại H, ta có:

\(AH^2+BH^2=AB^2\) 

Thay số: \(AH^2+4^2=5^2\) 

=> \(AH^2=5^2-4^2\)  

\(AH^2\) = 9

=> AH = 3(cm)

d) Ta có: tam giác AEH = tam giác AFH (theo phần b)

=> AE = AF ( 2 cạnh tương ứng)

=> tam giác AEF cân tại A

=> góc AEF = góc AFE = (180 độ - góc A) : 2   (1)

mà ta lại có tam giác ABC cân tại A

=> góc ABC = góc ACB = ( 180 độ - góc A) :2     (2)

Từ (1) và (2)

=> Góc AEF = góc ABC

mà hai góc này ở vị trí đồng vị => EF // BC

Chúc bạn học tốt nha 

8 tháng 4 2020

a. Ta có : Tam giác ABC cân tại A  

                 AH vuông vs BC

Mà trong tam giác cân đg cao cg là đg tt 

=> HB=HC

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

=>ΔABH=ΔACH

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

góc MAH=góc NAH

=>ΔAMH=ΔANH

=>AM=AN

Xét ΔABC có AM/AB=AN/AC

nên MN//BC

b: Xét ΔECB có

CA là trung tuyến

CA=BE/2

=>ΔECB vuông tại C

Xét tứ giác ADCH có

góc ADC=góc AHC=góc DCH=90 độ

=>ADCH là hcn

=>AD vuông góc AH