K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=8abc\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ac+c^2\right)-8abc=0\)

\(\Leftrightarrow a^2b+abc+a^2c+ac^2+ab^2+b^2c+abc+bc^2-8abc=0\)

\(\Leftrightarrow\left(a^2b-2abc+c^2b\right)+\left(a^2c-2abc+b^2c\right)+\left(ab^2-2abc+ac^2\right)=0\)

\(\Leftrightarrow b\left(a-c\right)^2+c\left(a-b\right)^2+a\left(b-c\right)^2=0\)

Do a;b;c dương nên \(b\left(a-c\right)^2;c\left(a-b\right)^2;a\left(b-c\right)^2\ge0\forall a;b;c\)

\(\Rightarrow b\left(a-c\right)^2+c\left(a-b\right)^2+a\left(b-c\right)^2\ge0\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c\) Thay vào P ta được :

\(P=\frac{a^3+a^3+a^3}{a.a.a}=\frac{3a^3}{a^3}=3\)

17 tháng 10 2017

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)

Vì a, b, c là các số dương \(\Rightarrow a=b=c=0\) ( loại )

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow a=b=c\) ( tự chứng minh )

\(\Rightarrow M=\left(\dfrac{a}{b}-1\right)+\left(\dfrac{b}{c}-1\right)+\left(\dfrac{c}{a}-1\right)=0\)

Vậy M = 0

15 tháng 10 2018

tran nguyen bao quan, Mysterious Person, @Nk>↑@, Khôi Bùi , DƯƠNG PHAN KHÁNH DƯƠNG, Lê Bùi, Hung nguyen, Trần Quốc Lộc, Nguyễn Thanh Hằng, Hồng Phúc Nguyễn, Nguyễn Huy Tú, Phương An, Trần Việt Linh,...

15 tháng 10 2018

cái này bảo tìm GT \(\Rightarrow\) P có GT cố định

ta có : \(a=b=c=1\) thỏa mãn đk bài toán

thế vào P ta có \(P=0\)

19 tháng 1 2018

a,ta có: \(a^3+b^3+c^3=3abc\)

<=>\(a^3+b^3+c^3-3abc=0\)

<=>\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

<=>\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

<=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

<=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

<=>\(\left(a+b+c\right)2\left(a^2-ab+b^2-ac-bc+c^2\right)=0\)

<=>\(\left(a+b+c\right)\left(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\right)=0\)

=>a=b,a=c,b=c

=>a=b=c

thay a=b=c vào P ta đc

\(P=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)