\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)với a + b + c khác 0  . Tính gi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a/b = 1 => a = b

b/c = 1 => b = c 

c/a = 1 => c = a

=> a=b=c

=> \(M=\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^2.b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)

26 tháng 10 2017

Ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c\)

\(\Rightarrow M=\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)

26 tháng 10 2017

Áp dụng tỉ dãy số bằng nhau:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{\left(a+b+c\right)}{b+c+a}=1\Rightarrow a=b=c\)

Khi đó: \(\frac{a^3.b^2.c^{1930}}{b^{1935}}\Leftrightarrow\frac{b^{1935}}{b^{1935}}=b^{1935}:b^{1935}=1\)

8 tháng 12 2019

Vì \(a+b+c\ne0\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c\)\(\Rightarrow M=\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^2.b^{1930}}{b^{1935}}=\frac{b^{3+2+1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)

Vậy \(M=1\)

1 tháng 10 2016

Ta có :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\Rightarrow\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^{1930}}{b^{1933}}=1\)

26 tháng 12 2019

theo tích chất dãy tỉ số bằng nhau ta có

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)

ta có\(\frac{a^3.b^2.c^{1930}}{c^{1935}}=\frac{c^3.c^2.c^{1930}}{c^{1935}}=\frac{c^{1935}}{c^{1935}}=1\)

4 tháng 11 2018

áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\Rightarrow a=b\\\frac{b}{c}=1\Rightarrow b=c\\\frac{c}{a}=1\Rightarrow c=a\end{cases}}\Rightarrow a=b=c\)

\(\Rightarrow\frac{a^3.b^2.c^{2011}}{b^{2016}}=\frac{a^{2016}}{a^{2016}}=1\)

4 tháng 11 2018

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c\)

\(M=\frac{a^3.b^2.c^{2011}}{b^{2016}}=\frac{b^{2011+3+2}}{b^{2016}}=\frac{b^{2016}}{b^{2016}}=1\)

2 tháng 2 2018

Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1

        c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1

=> A = 1+bc+b/bc+b+1 = 1

Tk mk nha

2 tháng 2 2018

BÀI 1:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)        

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)       (thay   abc = 1)

\(=\frac{a+ab+1}{a+ab+1}=1\)