Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: f(x) + xf(-x) = x + 2015 với mọi giá trị của x
=> f(1) + 1.f(-1) = 1 + 2015 => f(1) + f(-1) = 2016 (1)
f(-1) - 1 . f(1) = - 1 + 2015 => f(-1) - f(1) = 2014 (2)
Từ (1); (2) => f(-1) = ( 2016 + 2014 ) : 2 = 2015
\(x=1\Rightarrow f\left(1\right)+f\left(-1\right)=2016;x=-1\Rightarrow f\left(-1\right)-f\left(1\right)=2014\Rightarrow\)
\(f\left(1\right)+f\left(-1\right)-f\left(-1\right)+f\left(1\right)=2\Leftrightarrow f\left(1\right)=1\)
Trả lời:
Bạn shitbo làm đúng rồi
^_^
\(.\)
Theo đề ra. ta có: f(x)+x.f(-x)=x+1
*) Xét x= -1 => f(-1)-f(1)=0 => f(-1)=f(1) (1)
*) Xét x=1 => f(1)+(-1)= 2 (2)
Từ 1 và 2 => f(1)=2:2=1
\(xf\left(x-2\right)=\left(x+4\right)f\left(x+10\right)\)(*)
Thế \(x=0\)vào (*) ta được:
\(0f\left(0-2\right)=\left(0+4\right)f\left(0+10\right)\Leftrightarrow4f\left(10\right)=0\Leftrightarrow f\left(10\right)=0\)
Do đó \(x=10\)là một nghiệm của đa thức \(f\left(x\right)\).
Thế \(x=-4\)vào (*) ta được:
\(-4f\left(-4-2\right)=\left(-4+4\right)f\left(-4+10\right)\Leftrightarrow f\left(-6\right)=0\)
Do đó \(x=-6\)là một nghiệm của đa thức \(f\left(x\right)\).
Do đó \(f\left(x\right)\)có ít nhất hai nghiệm.
*Thay x=1=>f(1)+f(-1)=1+1=2
*Thay x=-1=>f(-1)-f(1)=-1+1=0
=>f(1)+f(-1)-(f(-1)-f(1))=2-0
=>2.f(1)=2
=>f(1)=1
f(1) + 1.f(-1) = 1+ 1 = 2 => f(1) + f(-1) = 2 (*)
f(-1) + (-1). f(1) = -1 + 1 = 0 => f(-1) - f(1) = 0 => f(-1) = f(1). Thay vào (*)
=> 2. f(1) = 2 => f(1) = 1
đây thường là câu khó trong đề thi
ukm