Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+3x^3-\left(2m-1\right)x^2-\left(3m+1\right)x+m^2+m=0\)
Để PT có 4 nghiệm phân biệt thì
\(\Leftrightarrow\hept{\begin{cases}1\ne0\left(lđ\right)\\m^2+m\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne0\\m\ne-1\end{cases}}}\)
Vậy \(m\ne0;m\ne-1\)thì PT có 4 nghiệm phân biệt
Bài toán bạn định hỏi, theo tác giả nói, có đúng 3 nghiệm phân biệt.
Để phương trình \(x^2-2mx-4\left(m^2+1\right)=0\) luôn có 2 nghiệm phân biệt (vì \(\Delta^'=m^2+4\left(m^2+1\right)=5m^2+4>0.\))
Xét phương trình thứ hai \(x^2-4x-2m\left(m^2+1\right)=0\). Nếu phương trình này vô nghiệm thì pt đã cho có tối đa 2 nghiệm, mâu thuẫn. Vậy phương trình thứ 2 có nghiệm kép hoặc có 2 nghiệm phân biệt.
Xét trường hợp phương trình thứ hai có nghiệm kép, tức
\(4+2m^3+2m=0\to m^3+m+2=0\to\left(m+1\right)\left(m^2-m+2\right)=0\)
Do đó \(m=-1.\) Thử lại, không thoả mãn vì phương trình đầu có nghiệm x=2.
Nếu phương trình thứ hai có hai nghiệm phân biệt thì hai phương trình phải có nghiệm chung là \(x_0\), do đó
\(x^2_0-4x_0-2m\left(m^2+1\right)=0\) và \(x_0^2-2mx_0-4\left(m^2+1\right)=0\). Trừ hai phương trình ta được \(\left(2m-4\right)x_0=\left(2m-4\right)\left(m^2+1\right)\). Do đó \(m=2\) hoặc \(x_0=m^2+1.\) Khi \(m=2\) thì hai phương trình trùng nhau nên phương trình đã cho có đúng 2 nghiệm phân biệt, loại. Giả sử \(x_0=m^2+1.\)Khi đó \(\left(m^2+1\right)^2-4\left(m^2+1\right)-2m\left(m^2+1\right)=0\to m^2+1-4-2m=0\)
\(m^2-2m-3=0\to m=-1,3.\)
Thử lại ta thấy \(m=-1,3\) đều thoả mãn.
a: \(\text{Δ}=\left(-5\right)^2-4\left(-2m+5\right)\)
=25+8m-20=8m+5
Để phương trình có nghiệm kép thì 8m+5=0
=>m=-5/8
=>x^2-5x+25/4=0
=>x=5/2
b: \(\text{Δ}=\left(2m-1\right)^2-4\left(m^2-2m+3\right)\)
\(=4m^2-4m+1-4m^2+8m-12=4m-11\)
Để phương trình có nghiệm kép thì 4m-11=0
=>m=11/4
=>x^2-9/2x+81/16=0
=>x=9/4
c: TH1: m=-3
=>-(2*(-3)+1)x+(-3-1)=0
=>-(-5x)-4=0
=>5x-4=0
=>x=4/5(nhận)
TH2: m<>-3
\(\text{Δ}=\left(2m+1\right)^2-4\left(m+3\right)\left(m-1\right)\)
\(=4m^2+4m+1-4\left(m^2+2m-3\right)\)
\(=4m^2+4m+1-4m^2-8m+12=-4m+13\)
Để phương trình có nghiệm kép thì -4m+13=0
=>m=13/4
=>25/4x^2-15/2x+9/4=0
=>(5/2x-3/2)^2=0
=>x=3/2:5/2=3/2*2/5=3/5
a, x2 - (3 - 2m)x + m2 = 0
\(\Delta\) = [-(3 - 2m)]2 - 4.1.m2 = 9 - 12m + 4m2 - 4m2 = 9 - 12m
Để pt trên có nghiệm kép thì \(\Delta\) = 0 \(\Leftrightarrow\) 9 - 12m = 0 \(\Leftrightarrow\) m = \(\dfrac{3}{4}\)
Vậy ...
b, x2 + (2m + 1)x + m2 = 0
\(\Delta\) = (2m + 1)2 - 4.1.m2 = 4m2 + 4m + 1 - 4m2 = 4m + 1
Để pt trên có nghiệm kép thì \(\Delta\) = 0 \(\Leftrightarrow\) 4m + 1 = 0 \(\Leftrightarrow\) m = \(\dfrac{-1}{4}\)
Vậy ...
Chúc bn học tốt!
Câm ơn bạn