Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(-\frac{13}{27}< 0< \frac{13131313}{27272727}\)
Suy ra\(-\frac{13}{27}< \frac{13131313}{27272727}\)
a)
\(\frac{64}{85}< \frac{64}{81}< \frac{73}{81}\)
=>\(\frac{64}{85}< \frac{73}{81}\)
b)
\(\frac{25}{26}=\frac{25.1010}{26.1010}=\frac{25250}{26260}\)
Ta có: \(1-\frac{25250}{26260}=\frac{1010}{26260}\)
\(1-\frac{25251}{26261}=\frac{1010}{26261}\)
Vì \(\frac{1010}{26260}>\frac{1010}{26261}\) nên \(\frac{25}{26}< \frac{25251}{26261}\)
a)\(\frac{64}{85}\)<\(\frac{64}{81}\)<\(\frac{73}{81}\)
b)\(\frac{25}{26}\)=\(\frac{25250}{26260}\)=\(1\)- \(\frac{1010}{26260}\)< \(1\)- \(\frac{1010}{26261}\)= \(\frac{25251}{26261}\)
A = \(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)< \(\frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}\) =\(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
= \(\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}\)= \(\frac{1}{2^2.3.5^2.7}\)= B
Vậy A < B
\(A<\frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}=\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}\)
B = 1/2100
=> A< B
Ta có:
\(M=\frac{101^{102}+1}{101^{103}+1}\)
\(101M=\frac{101^{103}+1+100}{101^{103}+1}=1+\frac{100}{101^{103}+1}\)
Ta lại có:
\(N=\frac{101^{103}+1}{101^{104}+1}\)
\(101N=\frac{101^{104}+1+100}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)
Vì \(\frac{100}{101^{104}+1}< \frac{100}{101^{103}+1}\Rightarrow101N< 101M\Rightarrow N< M\)
Ta có: M =\(\frac{101^{102}+1}{101^{103}+1}=\frac{101^{103}+101}{101^{104}+101}=\frac{101^{103}+1+100}{101^{104}+1+100}\)
Mà : N = \(\frac{101^{103}+1}{101^{104}+1}\)< M = \(\frac{101^{103}+1+100}{101^{104}+1+100}\)
\(\Rightarrow N< M\)
a) ta thấy :
\(\frac{-1}{25}<0\)
\(\frac{1}{1225}>0\)
=>\(\frac{-1}{25}<\frac{1}{1225}\)
b) ta thấy:
\(\frac{215}{216}<1\)
\(\frac{104}{103}>1\)
=>\(\frac{215}{216}<\frac{104}{103}\)
So sánh \(\frac{-788}{789}\) và \(\frac{-789}{788}\)