K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

14 tháng 12 2017
mik cần gấp lm giúp mik nha
14 tháng 12 2017

a) M là trung điểm AC(gt) => AM=CM

Xét tg BMC và tg DMA ta có:

  • BM=DM(gt)
  • ^BMC=^DMA(đối đỉnh)
  • MC=MA(cmt)

=> tg BMC=tg DMA(c.g.c)

b) tg BMC=tg DMA(câu a)

=> ^MBC=^MDA (2 góc tương ứng)

Mà 2 góc này so le trong => AD//BC

Lại có: AH vuông góc BC(gt)            

=> AH vuông góc AD (quan hệ //, vuông góc)

c) Ta có: AH vuông góc AD( câu b)

               CK vuông góc AD(gt)

=> AH//CK(1)

Mà AD//BC(câu b) hay AK//CH (2)

Từ (1),(2) => AH=CK; AK=CH(3)

Tg BMC= tg DMA (câu a) => BC=DA(4)

Lại có: BC=CH + BH(5)

            DA= AK + DK(6)

Từ (3)(4)(5)(6) => BH=DK

Có: ^MBC=^MDA(câu b) hay ^MBH=^MDK

Xét tg BMH và tg DMK có:

  • BM=DM(gt)
  • ^MBH=^MDK (cmt)
  • BH=DK (cmt)

=> tg BMH=tg DMK (c.g.c)

=> ^BMH=^DMK

=>^BMH + ^BMK =^DMK+^BMK

Hay: ^HMK=^BMD=180°

=> H, M, K thẳng hàng

17 tháng 11 2018

Kiểm tra lại đề nhé!:) D là trung điểm DB ?????

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)

1 tháng 12 2022

 

hình bạn nhé :

Xét ΔABEΔABE và ΔDCEΔDCE có :

EB=ECEB=EC (EE là trung điểm BCBC)

EA=EDEA=ED (EE là trung điểm ADAD)

∠AEB=∠DEC∠AEB=∠DEC (đối đỉnh)

⇒ΔABE=ΔDCE(c−g−c)⇒ΔABE=ΔDCE(c−g−c)

b) Chứng minh: AC//BDAC//BD.

Xét ΔACEΔACE và ΔDBEΔDBE có :

EB=ECEB=EC (EE là trung điểm BCBC)

EA=EDEA=ED (EE là trung điểm ADAD)

∠AEC=∠DEB∠AEC=∠DEB (đối đỉnh)

⇒ΔACE=ΔDBE(c−g−c)⇒ΔACE=ΔDBE(c−g−c)

⇒∠ACE=DBE⇒∠ACE=DBE (góc tương ứng)

Mà hai góc ở vị trí so le trong nên AC//BDAC//BD (đpcm)

c) Vẽ AHAH vuông góc với ECEC (HH thuộc BCBC). Trên tia AHAH lấy điểm KK sao cho HH là trung điểm của AKAK. Chứng  minh rằng BD=AC=CKBD=AC=CK.

Ta có : ΔACE=ΔDBE(cmt)ΔACE=ΔDBE(cmt)⇒BD=AC⇒BD=AC (cạnh tương ứng) (1)

Xét ΔCAHΔCAH và ΔCKHΔCKH có :

CHCH chung

∠CHA=∠CHK=900∠CHA=∠CHK=900

HA=HK(gt)HA=HK(gt)

⇒ΔCAH=ΔCKH(c−g−c)⇒ΔCAH=ΔCKH(c−g−c)

⇒CA=CK⇒CA=CK (2)

Từ (1) và (2) suy ra AC=BD=CKAC=BD=CK (đpcm)

d) Chứng minh DKDK vuông góc với AHAH.

Nối EE với KK.

Xét ΔEAHΔEAH và ΔEKHΔEKH có :

EHEH chung

∠EHA=∠EHK=900∠EHA=∠EHK=900

HA=HK(gt)HA=HK(gt)

⇒ΔEAH=ΔEKH(c−g−c)⇒ΔEAH=ΔEKH(c−g−c) ⇒∠EAH=∠EKH⇒∠EAH=∠EKH (góc t/ư) (3)

EK=EAEK=EA (cạnh t/ư), mà EA=ED(gt)EA=ED(gt) ⇒EK=ED⇒EK=ED ⇒ΔEKD⇒ΔEKD cân tại EE

⇒∠EKD=∠EDK⇒∠EKD=∠EDK (t/c) (4)

Từ (3) và (4) suy ra ∠EAK+∠EDK=∠EKA+∠EKD=∠AKD∠EAK+∠EDK=∠EKA+∠EKD=∠AKD

Tam giác AKDAKD có : ∠EAK+∠EDK+∠AKD=1800∠EAK+∠EDK+∠AKD=1800

⇒∠AKD+∠AKD=1800⇒2∠AKD=1800⇒∠AKD=1800:2=900⇒∠AKD+∠AKD=1800⇒2∠AKD=1800⇒∠AKD=1800:2=900

Vậy AK⊥KDAK⊥KD (đpcm).

chúc bạn học tốt

9 tháng 4 2019

A B C I M D H K

a) Xét  \(\Delta AIB\),\(\Delta AIC\) có: ^BAI=^CAI (gt) , AI chung, AB=AC

=>\(\Delta AIB\)=\(\Delta AIC\)(c.g.c)

b) Xét\(\Delta AMD\), \(\Delta CMB\) có: ^AMD=^BMC (2 goc đối điỉnh)

AM=MC(gt) ; BM=MD(gt)

=>\(\Delta AMD\)=\(\Delta CMB\)(c.g.c)

=> AD=BC ;  BD=AC

Xét \(\Delta ABC\) => AB+BC>AC ( bđt trong tam giác)

mà AC=BD => AB+BC>BD

c) xét \(\Delta AHM\),\(\Delta CKM\) (^AHM=^CKM=90o) có: AM=MC(gt) ,  ^AMH=^CMK ( 2gocs dd)

=>\(\Delta AHM\)=\(\Delta CKM\)

=>AH=CK

=>AH+CK=2AH

Xét \(\Delta AHM\) vuông tại H:=> ^AMH< ^AHM

=> AM>AH

=>2AM>2AH

mà 2AM=AC(gt) 2AH= AH +CK

=>AC>AH+CK