K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2021

\(x^2-2mx+2m-3=0\)

\(\Delta^,_x=m^2-2m+3\)

\(=\left(m-1\right)^2+2\ge2>0;\forall m\)

\(\Rightarrow\)pt luôn có 2 nghiệm phân biệt \(x_1,x_2\)

Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-3\end{cases}}\)

Ta có : \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)

\(\Leftrightarrow1-x_1^2-x_2^2+x_1^2x_2^2=-4\)

\(\Leftrightarrow1-\left(x_1^2+x_2^2\right)+\left(x_1x_2\right)^2=-4\)

\(\Leftrightarrow1-\left(x_1+x_2\right)^2+2x_1x_2+\left(x_1x_2\right)^2=-4\)

\(\Leftrightarrow1-4m^2+4m-6+\left(2m-3\right)^2=-4\)

\(\Leftrightarrow-8m+4=-4\)

\(\Leftrightarrow m=1\)

Vậy m=1 thì pt có 2 nghiệm phân biệt \(x_1,x_2\)thỏa mãn hệ thức  \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)

5 tháng 3 2022

a, \(\Delta'=1-\left(2m-5\right)=6-2m\)

để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)

b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)

\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm) 

5 tháng 3 2022

a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)

Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)

b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)

Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)

Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)

Vậy để [...] thì \(m=\frac{39}{14}\)

17 tháng 5 2018

Bạn tham khảo ở đường link dưới nhé

Câu hỏi của Châu Minh Khang - Toán lớp 9 - Học toán với OnlineMath

25 tháng 7 2015

câu 1:

Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)

có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)

\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)

câu 2 mk k bik lm nha 

 

1 tháng 6 2017

chỗ \(x_2=1\)là dấu cộng hay trừ đấy

x2 - (m +2) + 2m = 0

\(\Delta\)= (-1)2(m + 2 ) 2   - 8m

          = m2  + 4m + 4 -8m

              = m2 - 4m + 4

               = (m-2)2  \(\ge\)\(\forall\)m

\(\Rightarrow\)pt luôn có 2 nghiệm 

theo hệ thức vi ét ta có

x1  + x2 = m + 2

x1 . x2 = 2m

ta có ( x1 + x2 ) 2  - x1x2 \(\le\)5

           (m+ 2)2  - 2m \(\le\)5

              m2  + 4m + 4 -2m \(\le\)5

               m2  + 2m - 1 \(\le\)

                 m2  + 2m + 1 \(\le\)2

                   ( m+ 1 )2  \(\le\)2

                     m + 1 \(\le\sqrt{2}\)

                        m \(\le\sqrt{2}-1\)

 vậy .................. khi m \(\le\)\(\sqrt{2}-1\)

12 tháng 5 2019

Bảo đảm bài này có thi tuyển sinh nè em ! 


Theo hệ thức Vi - ét:

\(x_1+x_2=-\frac{b}{a}=\frac{m+2}{1}=m+2\)

\(x_1.x_2=\frac{c}{a}=\frac{2m}{1}=2m\)

Theo đề bài:

\(\left(x_1+x_2\right)^2-x_1x_2\le5\)

       \(\left(m+2\right)^2-2m\le5\)

\(\Leftrightarrow m^2+4m+4-2m\le5\)

\(\Leftrightarrow m^2+2m-1\le0\)

\(\Leftrightarrow\orbr{\begin{cases}m\ge-1-\sqrt{2}\\m\le-1+\sqrt{2}\end{cases}}\) ( Cái này dùng máy tính bấm ra nha: (VN PLUS: more \(\downarrow\)1   1)    (580VN X: menu A   2    4)    ) 

                                                      ( Còn nếu bài yêu cầu giải tay thì anh có giải tay ở phía dưới nha. ) 

\(\Leftrightarrow m\in\left[-1-\sqrt{2};-1+\sqrt{2}\right]\)

Vậy \(\left(x_1+x_2\right)^2-x_1x_2\le5,\forall m\in\left[-1-\sqrt{2};-1+\sqrt{2}\right]\) 

Giải tay nè: 

\(m^2+2m-1\le0\)

\(Cho:m^2+2m-1=0\)

\(\Delta=2^2-4.1.\left(-1\right)=8>0\)

\(\sqrt{\Delta}=\sqrt{8}=2\sqrt{2}\)

pt có 2 nghiệm pb:

\(x_1=\frac{-2+2\sqrt{2}}{2.1}=\frac{2.\left(-1+\sqrt{2}\right)}{2}=-1+\sqrt{2}\)

\(x_2=\frac{-2-2\sqrt{2}}{2.1}=\frac{2\left(-1-\sqrt{2}\right)}{2}=-1-\sqrt{2}\)

Bảng xét dấu:

x m^2+2m-1 -oo -1- v2 -1+ v2 +oo 0 o - + +

Vậy: \(m\in\left[-1-\sqrt{2};-1+\sqrt{2}\right]\)

HỌC TỐT !!!!

3 tháng 6 2018

x12+x22-3(x1+x2)=(x1+x2)2-2x1x2-3(x1+x2)
Dùng vi- ét giải m là ra

3 tháng 6 2018

mik dùng vi-et ra m- m - 21 = 0 r sao nữa bạn

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)