Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(-1\le sinx\le1\Rightarrow-7\le y\le-3\)
\(y_{min}=-7\) khi \(sinx=-1\)
\(y_{max}=-3\) khi \(sinx=1\)
b.
\(-1\le cos\left(x+\frac{\pi}{3}\right)\le1\Rightarrow1\le y\le5\)
\(y_{min}=1\) khi \(cos\left(x+\frac{\pi}{3}\right)=-1\)
\(y_{max}=5\) khi \(cos\left(x+\frac{\pi}{3}\right)=1\)
c.
\(0\le1-cosx\le2\Rightarrow-5\le y\le3\sqrt{2}-5\)
\(y_{min}=-5\) khi \(cosx=1\)
\(y_{max}=3\sqrt{2}-5\) khi \(cosx=-1\)
d.
ĐKXĐ: \(0\le sinx\Rightarrow0\le sinx\le1\Rightarrow1\le y\le3\)
\(y_{min}=1\) khi \(sinx=0\)
\(y_{max}=3\) khi \(sinx=1\)
a/ \(y'=\frac{\left(2x^2-5x+2\right)'}{2\sqrt{2x^2-5x+2}}=\frac{4x-5}{2\sqrt{2x^2-5x+2}}\)
b/ \(y'=\frac{\left(x+\sqrt{x}\right)'}{2\sqrt{x+\sqrt{x}}}=\frac{1+\frac{1}{2\sqrt{x}}}{2\sqrt{x+\sqrt{x}}}=\frac{2\sqrt{x}+1}{4\sqrt{x^2+x\sqrt{x}}}\)
c/ \(y'=\sqrt{x^2+3}+\left(x-2\right).\frac{\left(x^2+3\right)'}{2\sqrt{x^2+3}}=\frac{2x^2-2x+3}{\sqrt{x^2+3}}\)
d/ \(y'=3\left(1+\sqrt{1-2x}\right)^2.\left(1+\sqrt{1-2x}\right)'=\frac{-3\left(1+\sqrt{1-2x}\right)^2}{\sqrt{1-2x}}\)
e/ \(y'=\frac{1}{2}\sqrt{\frac{x-1}{x^3}}\left(\frac{x^3}{x-1}\right)'=\frac{1}{2}\sqrt{\frac{x-1}{x^3}}\left(\frac{x^2\left(x-1\right)-x^3}{\left(x-1\right)^2}\right)=\frac{-x^2}{2\left(x-1\right)^2}\sqrt{\frac{x-1}{x^3}}\)
f/ \(y'=\frac{4\sqrt{x^2+2}-\left(4x+1\right)\left(\sqrt{x^2+2}\right)'}{x^2+2}=\frac{4\sqrt{x^2+2}-\left(4x+1\right).\frac{x}{\sqrt{x^2+2}}}{x^2+2}\)
\(=\frac{4\left(x^2+2\right)-\left(4x^2+x\right)}{\left(x^2+2\right)\sqrt{x^2+2}}=\frac{8-x}{\left(x^2+2\right)\sqrt{x^2+2}}\)
Áp dụng bđt \(\sqrt[3]{a_1^3+b_1^3}+\sqrt[3]{b_1^3+b_2^3}+\sqrt[3]{a_3^3+b_3^3}\ge\sqrt[3]{\left(a_1+a_2+a_3\right)^3+\left(b_1+b_2+b_3\right)^3}\)
và bđt \(\left(a+b+c\right)^3\ge27abc\)
Ta thu đc \(M\ge\sqrt[3]{\left(x+y+z\right)^3+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^3}\ge\sqrt[3]{27abc+\frac{27}{abc}}\)
Đặt \(0< t=abc\le\left(\frac{a+b+c}{3}\right)^3\le\frac{1}{8}\)ta thu được
\(P\ge\sqrt[3]{f\left(t\right)}=\sqrt[3]{27t+\frac{27}{t}}\)
Lại có \(f\left(t\right)=27\left(64t+\frac{1}{t}-63t\right)\ge27\left(2\sqrt{64}-\frac{63}{8}\right)\)
\(\Leftrightarrow f\left(t\right)\ge27\left(16-\frac{63}{8}\right)=\frac{27.65}{8}\)
\(\Rightarrow P\ge\sqrt[3]{\frac{27.65}{8}}=\frac{3}{2}\sqrt[3]{65}\)(Đpcm !)
Nguồn : Team toán tỉnh 9B Tiên Lữ !!!!
Áp dụng BĐT Cô-si ta có:
\(1+x^3+y^3\ge3\sqrt[3]{1.x^3.y^3}=3xy\Rightarrow\sqrt{1+x^3+y^3}\ge\sqrt{3xy}\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}\)
Tương tự:\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz};\frac{\sqrt{1+z^3+x^3}}{zx}\ge\frac{\sqrt{3zx}}{zx}\)
Công vế với vế của 3 BĐT trên ta đươc:
\(P\ge\frac{\sqrt{3xy}}{xy}+\frac{\sqrt{3yz}}{yz}+\frac{\sqrt{3zx}}{zx}=\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\) \(=\sqrt{3}.\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge3\sqrt{3}\)
Dấu '='xảy ra khi \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy \(P_{min}=3\sqrt{3}\)khi \(x=y=z=1\)
:))
d.
\(-1\le sin2x\le1\Rightarrow2\le y\le1+\sqrt{3}\)
\(y_{min}=2\) khi \(sin2x=-1\)
\(y_{max}=1+\sqrt{3}\) khi \(sin2x=1\)
e.
\(0\le sin^2x\le1\Rightarrow\frac{4}{3}\le y\le2\)
\(y_{min}=\frac{4}{3}\) khi \(sin^2x=1\)
\(y_{max}=2\) khi \(sinx=0\)
a.
\(0\le cos^2x\le1\Rightarrow2\le y\le1+\sqrt{3}\)
\(y_{min}=2\) khi \(cosx=0\)
\(y_{max}=1+\sqrt{3}\) khi \(cos^2x=1\)
b.
\(-1\le sin\left(2x-\frac{\pi}{4}\right)\le1\Rightarrow-2\le y\le4\)
\(y_{min}=-2\) khi \(sin\left(2x-\frac{\pi}{4}\right)=-1\)
\(y_{max}=4\) khi \(sin\left(2x-\frac{\pi}{4}\right)=1\)
c.
\(0\le cos^23x\le1\Rightarrow1\le y\le3\)
\(y_{min}=1\) khi \(cos^23x=1\)
\(y_{max}=3\) khi \(cos3x=0\)
2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)
ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0
\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1
vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)
\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1
\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0
vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)
a/ \(y'=42\left(2x+3\right)^{20}\left(x-4\right)^{23}+23\left(x-4\right)^{22}\left(2x+3\right)^{21}\)
b/ \(y=\frac{1}{x\sqrt{x}}=\frac{1}{\sqrt{x^3}}=x^{-\frac{3}{2}}\Rightarrow y'=-\frac{3}{2}x^{-\frac{5}{2}}=-\frac{3}{2x^2\sqrt{x}}\)
c/ \(y'=\frac{\left(x+\frac{1}{x}\right)'}{2\sqrt{\frac{x^2+1}{x}}}=\frac{1-\frac{1}{x^2}}{2\sqrt{\frac{x^2+1}{x}}}=\frac{\left(x^2-1\right)\sqrt{x}}{2x^2\sqrt{x^2+1}}\)
d/ \(y=x^2+x^{\frac{3}{2}}+1\Rightarrow y'=2x+\frac{3}{2}x^{\frac{1}{2}}=2x+\frac{3}{2}\sqrt{x}\)
e/ \(y'=\frac{\sqrt{1-x}+\frac{1+x}{2\sqrt{1-x}}}{1-x}=\frac{3-x}{2\left(1-x\right)\sqrt{1-x}}\)
f/ \(y'=\frac{\sqrt{a^2-x^2}+\frac{x^2}{\sqrt{a^2-x^2}}}{a^2-x^2}=\frac{a^2}{a^2-x^2}\)
\(y^2=\frac{x^2+2\sqrt{3}x+3}{x^2+1}=\frac{4\left(x^2+1\right)-\left(3x^2-2\sqrt{3}x+1\right)}{x^2+1}=4-\frac{\left(\sqrt{3}x-1\right)^2}{x^2+1}\le4\)
\(\Rightarrow y\le2\)
\(y_{max}=2\) khi \(x=\frac{1}{\sqrt{3}}\)