K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

Gọi A=n4

=> A=(2n)2

=> A là số chính phương

2 tháng 1 2017

mình sai chút xíu

Gọi A=n4

=> A=(n2)2

Vậy A là một số chính phương

12 tháng 3 2017

ghép 2 số đầu và cuối làm 1 cặp rồi phân tích ra .

2 số ở giữa làm 1 cặp rồi phân tích ra .
sau đó đặt x^2+5xy+4y^2 là t
laijtieeps tục phân tích rồi dùng hằng đẳng thức là lm đc

20 tháng 11 2019

ồ bài này khá dễ

Ta có

\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\)

\(\)\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2-y^4+y^4\)

\(=t^2=\left(x^2+5xy+5y^2\right)^2\)

Vì \(x,y,z\in Z\) nên \(\hept{\begin{cases}x^2\in Z\\5xy\in Z\\5y^2\in Z\end{cases}\Rightarrow x^2+5xy+y^2\in Z}\)

Vậy A là số chính phương

20 tháng 11 2019

\(A=\left[\left(x+y\right)\left(x+4y\right)\right]\left[\left(x+2y\right)\left(x+3y\right)\right]+y^4.\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4.\)

\(=\left[\left(x^2+5xy+5y^2\right)-y^2\right]\left[\left(x^2+5xy+5y^2\right)+y^2\right]+y^4.\)

\(=\left(x^2+5xy+5y^2\right)^2-y^4+y^4\)

\(=\left(x^2+5xy+5y^2\right)^2\)

Đến đây ta có điều phải chứng minh rồi :>

24 tháng 5 2015

ta có A = (x+y)(x+2y)(x+3y)(x+4y)+y4 

           =(x2+5xy+4y2 )(x2+5xy+6y2)+y4 

đặt x2 +5xy+5y2 =t (t thuộc Z) thi 

A= (t -y2 )(t+y2)+y4 =t2 -y4+y4 =t2=(x2 +5xy+5y2)2

24 tháng 5 2015

tôi coi tôi tự trả lời mới là tôi đúng 

22 tháng 10 2020

N = ( x - y )( x - 2y )( x - 3y )( x - 4y ) + y4

= [ ( x - y )( x - 4y ) ][ ( x - 2y )( x - 3y ) ] + y4

= ( x2 - 5xy + 4y2 )( x2 - 5xy + 6y2 ) + y4

Đặt t = x2 - 5xy + 5y2

N = ( t - y2 )( t + y2 ) + y4

    = t2 - y4 + y4

    = t2 = ( x2 - 5xy + 5y2 )2

Vì x, y thuộc Z => x2 thuộc Z ; -5xy thuộc Z ; 5y2 thuộc Z

=> ( x2 - 5xy + 5y2 )là một số chính phương

=> đpcm

22 tháng 10 2020

\(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4\)

\(=\left(x-y\right)\left(x-4y\right)\left(x-2y\right)\left(x-3y\right)+y^4\)

\(=\left(x^2-5xy+4y^2\right)\left(x^2-5xy+6y^2\right)+y^4\)

Đặt \(x^2-5xy+5y^2=t\)

\(\Rightarrow\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2-y^4+y^4=t^2\)

\(=\left(x^2-5xy+5y^2\right)^2\)

Vì \(x,y\inℤ\)\(\Rightarrow\left(x^2-5xy+5y^2\right)^2\)là số chính phương

hay \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4\)là số chính phương ( đpcm )

8 tháng 1 2019

a) => y+42+2y= -12-14+2y

y+2y-2y = -12-14-42

y= -68

b) => 15+y-5-5y= -12-5y

y-5y+5y= -12-15+5

y = -22

c) => 2y+5-8y+21= -3-5y-2

2y-8y+5y= -3-2-5-21

-y= -31=>y=31

d)=> -13+3y+23= -120+y

3y-y= -120+13-23

2y= -130=>y= -65

e) => -21+32+5y= 16+4y

5y-4y= 16+21-32

y= 5

8 tháng 1 2019

bài 1

a)y-(-42-2y) = (-12) - 14 +2y

y +42 + 2y = -12 -14 +2y

3y + 42 = -26 +2y

y = -68

b)15-(-y+5)-5y=-(12+5y+2)

15+y-5-5y=-12-5y-2

10-4y=-14-5y

-4y+5y=-14-10=-24

c)2y-(-5+8y-21)=-3-(5y+2)

2y+5-8y+21=-3y-5y-2

-6y+26=-8y-2

-6y+8y=-2-26

2y=-28

y=-28/2=-14