Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\frac{8-y}{y-7}+\frac{1}{7-y}=8\)
ĐKXĐ: \(x\ne7\)
\(\Leftrightarrow\frac{\left(8-y\right)\left(7-y\right)}{\left(y-7\right)\left(7-y\right)}+\frac{y-7}{\left(y-7\right)\left(7-y\right)}=\frac{8\left(y-7\right)\left(7-y\right)}{\left(y-7\right)\left(7-y\right)}\)
\(\Rightarrow56-15y+y^2+y-7=112y-8y^2-392\)
\(\Leftrightarrow49-14y+y^2=112y-8y^2-392\)
\(\Leftrightarrow9y^2-126y+441=0\)
\(\Leftrightarrow9\left(y^2-14y+49\right)=0\)
\(\Leftrightarrow\left(y-7\right)^2=0\)
\(\Leftrightarrow y-7=0\)
\(\Leftrightarrow y=7\left(Loại\right)\)
Vậy không có giá trị nào để biểu thức \(\frac{8-y}{y-7}+\frac{1}{7-y}\) có giá trị bằng 8.
a) \(\frac{y-1}{y-2}-\frac{y+3}{y-4}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)
ĐKXĐ: \(y\ne2;y\ne4\)
\(\Leftrightarrow\frac{\left(y-1\right)\left(y-4\right)}{\left(y-2\right)\left(y-4\right)}-\frac{\left(y+3\right)\left(y-2\right)}{\left(y-2\right)\left(y-4\right)}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)
\(\Rightarrow y^2-5y+4-y^2-y+6=-2\)
\(\Leftrightarrow10-6y=-2\)
\(\Leftrightarrow-6y=-12\)
\(\Leftrightarrow y=2\left(Loại\right)\)
Vậy không có giá trị nào của y để biểu thức \(\frac{y-1}{y-2}-\frac{y+3}{y-4}\) và \(\frac{-2}{\left(y-2\right)\left(y-4\right)}\) có giá trị bằng nhau.
P=(\(\dfrac{x^2}{x^2-y^2}+\dfrac{y\left(x+y\right)}{x^2-y^2}\)):\(\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^4-y^4\right)}\)
P=\(\dfrac{X^2+xy+y^2}{x^2-y^2}\).\(\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{x^2+xy+y^2}\)
P=x^2+y^2=(x+y)^2-2xy=5^2-(-1)=26
Bài 1 rút gọn bc tự làm :
\(B=\dfrac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}\)
\(B=\dfrac{3x^3-3y^2-4y^2+4y+y-1}{2y^3-2y^2+y^2-y+3y-3}\)
\(B=\dfrac{3y^2\left(y-1\right)-4y\left(y-1\right)+\left(y-1\right)}{2y^2\left(y-1\right)+y\left(y-1\right)-3\left(y-1\right)}\)
\(B=\dfrac{\left(3y^2-4y+1\right)\left(y-1\right)}{\left(2y^2+y-3\right)\left(y-1\right)}\)
\(B=\dfrac{3y^2-3y-y+1}{2y^2-2y+3y-3}=\dfrac{3y\left(y-1\right)-\left(y-1\right)}{2y\left(y-1\right)+3\left(y-1\right)}\)
\(B=\dfrac{\left(3y-1\right)\left(y-1\right)}{\left(3y+2\right)\left(y-1\right)}=\dfrac{3y-1}{3y+2}\)
Bài 2 )
a ) \(x+\dfrac{1}{x}=3\)
\(\Leftrightarrow x^2+2x\dfrac{1}{x}+\dfrac{1}{x^2}=9\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}=1\)
b ) \(\left(x+\dfrac{1}{x}\right)^3=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}+\dfrac{3}{x}+3x=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}+3\left(\dfrac{1}{x}+x\right)=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}=18\)
Đặt \(A=\left[\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-1}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+x+xy+y}\right]:\dfrac{x+1}{2x^2+y+2}\)
\(A=\left[\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-1}{\left(x+y\right).\left(x-2y\right)}\right):\dfrac{\left(2x^2+y+2\right).\left(2x^2+y-2\right)}{\left(x+y\right).\left(x+1\right)}\right]:\dfrac{x+1}{2x^2+y+2}\)
\(A=\left(\dfrac{\left(x-y\right).\left(x+y\right)+x^2+y^2+y-2}{\left(x+y\right).\left(2y-x\right)}.\dfrac{\left(x+y\right).\left(x+1\right)}{\left(2x^2+y+2\right).\left(2x^2+y-2\right)}\right):\dfrac{2x^2+y+2}{x+1}\)
\(A=\left(\dfrac{2x^2+y-2}{2y-x}.\dfrac{x+1}{2x^2+y-2}\right).\dfrac{1}{x+1}\)
\(A=\dfrac{1}{2y-x}\)
Thay \(x=-1,76\) và \(y=\dfrac{3}{25}\) vào biểu thức ta được:
\(A=\dfrac{1}{2.\dfrac{3}{25}-\left(-1,76\right)}\)
\(A=\dfrac{1}{2}\)
\(B=\left(\dfrac{1}{x^2-xy}-\dfrac{3y^2}{x^4-xy^3}-\dfrac{y}{x^2+x^2y+xy^2}\right).\left(y+\dfrac{x^2}{x+y}\right)\)
\(B=\left(\dfrac{1}{x\left(x-y\right)}-\dfrac{3y^2}{x\left(x^3-y^3\right)}-\dfrac{y}{x\left(x^2+xy+y\right)}\right).\left(y+\dfrac{x^2}{x+y}\right)\)
\(B=\left(\dfrac{1}{x\left(x-y\right)}-\dfrac{3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{y}{x\left(x^2+xy+y^2\right)}\right).\left(y+\dfrac{x^2}{x+y}\right)\)
\(B=\left(\dfrac{x^2+xy+y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{y\left(x-y\right)}{x\left(x^2+xy+y^2\right)}\right).\left(y+\dfrac{x^2}{x+y}\right)\)
\(B=\left(\dfrac{x^2+xy+y^2-3y^2-xy+y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right).\left(y+\dfrac{x^2}{x+y}\right)\)
\(B=\dfrac{x^2+2y^2-3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}.\left(y+\dfrac{x^2}{x+y}\right)\)
\(B=\dfrac{x^2+2y^2-3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}.\left(\dfrac{y\left(x+y\right)}{x+y}+\dfrac{x^2}{x+y}\right)\)
\(B=\dfrac{x^2+2y^2-3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}.\dfrac{x^2+xy+y^2}{x+y}\)
\(B=\dfrac{x^2+2y^2-3y^2}{x\left(x^2-y^2\right)}\)
a: \(P=\left(\dfrac{-\left(y+2\right)}{y-2}-\dfrac{4y^2}{\left(y-2\right)\left(y+2\right)}+\dfrac{y-2}{y+2}\right)\cdot\dfrac{y^2\left(2-y\right)}{y\left(y-3\right)}:\dfrac{1}{y-3}\)
\(=\dfrac{-y^2-4y-4-4y^2+y^2-4y+4}{\left(y-2\right)\left(y+2\right)}\cdot\dfrac{y\left(2-y\right)}{y-3}\cdot\dfrac{y-3}{1}\)
\(=\dfrac{-4y^2-8y}{y+2}\cdot\dfrac{-y}{1}\)
\(=4y^2\)
b: Khi y=-1/2 thì \(P=\dfrac{-1}{2}\cdot\dfrac{-1}{2}\cdot4=4\cdot\dfrac{1}{4}=1\)