K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

a) A = | x - 3 | + 1 

| x - 3 |\(\ge\)0

Nên | x - 3 |+1\(\ge\)1

Dấu = xảy ra khi x-3=0 hay x=3

Vậy GTNN của A=1 khi x=3

b ) B = | 6 - 2x | - 5 

 | 6 - 2x |\(\ge\)0

Nên |6-2x|-5\(\ge\)-5

Dấu = xảy ra khi 6-2x=0 hay x=3

Vậy GTNN của B=-5 khi x=3

c ) C = - ( x + 1 ) 2 - |2y - y | + 11 

Vì ( x + 1 ) 2\(\ge\)0

Nên -( x + 1 ) 2\(\le\)0

Vì  |2y - y |\(\ge\)0

Nên  - |2y - y |\(\le\)0

 C = - ( x + 1 ) 2 - |2y - y | + 11 \(\le\)11

Dấu = xảy ra khi x+1=0 và 2y-y=0 hay x=-1;y=0

Vậy GTLN của C=11 khi x=-1 và y=0

d ) D = ( x + 5 )2 + (2y - 6 )2 + 1

Vì  ( x + 5 )2 \(\ge\)0

      (2y - 6 )2 \(\ge\)0

 D = ( x + 5 )2 + (2y - 6 )2 + 1\(\ge\)1

Vậy dấu = xảy ra khi x+5=0;2y-6=0 hay x=-5;y=3

Vậy GTNN của D=1 khi x=-5;y=3

5 tháng 11 2017

GTNN là gì z.tui ko  hiểu nên ko giải được!

GTNN là giá trị nhỏ nhất

10 tháng 1 2016

ta có : x-y= -9 => x =  y + 9 ( 1 ) 

y-z = 10 => z = y + 10  (2 ) 

Thay (1) và (2 ) vào z + x = 11 ta có  :

y + 9 +10 + y = 11

=> 2y + 19 = 11 

=> 2y = -8 

=> y = -4

thay y = - 4 vào (1 ) ta có x =5 vào 2 thì đk z = 6 

 

10 tháng 1 2016

>.<" **** đi nha pn 

25 tháng 1 2017

Bài 1:

A = 32 + 33 + 34 + ... + 32018

3A = 33 + 34 + 35 + ... + 32019

3A - A = (33 + 34 + 35 + ... + 32019) - (32 + 33 + 34 + ... + 32018)

2A = 32019 - 9

A = (32019 - 9) : 2

= (32016.33 - 9) : 2

= [ (34)504.27 - 9] : 2

= [ (...1)504.27 - 9] : 2

= [ (...1).27 - 9] : 2

= [ (...7) - 9] : 2

= (....8) : 2

= ...4

Vậy c/s tận cùng của A là 4

Bài 2:

Ta có:

1019 + 1018 + 1017

= 1016.103 + 1016.102 + 1016.10

= 1016.(103 + 102 + 10)

= 1016.1110

= 1016.2.555

Vì 555 chia hết cho 555 nên 1016.2.555 chia hết cho 555

Vậy 1019 + 1018 + 1017 chia hết cho 555 (đpcm)

Bài 3:

x + 6 chia hết cho x + 2

=> x + 2 + 4 chia hết cho x + 2

=> 4 chia hết cho x + 2

=> x + 2 thuộc Ư(4) = {\(\pm1;\pm2;\pm4\)}

x + 2 1 -1 2 -2 4 -4
x -1 -3 0 -4 2 -6

Vậy x = {-1;-3;0;-4;2;-6}

Bài 4:

Giả sử x + 4y chia hết cho 7 (1)

Vì 3x + 5y chia hết cho 7 nên 2(3x + 5y) chia hết cho 7

=> 6x + 10y chia hết cho 7 (2)

Từ (1) và (2) => (x + 4y) + (6x + 10y) chia hết cho 7

=> x + 4y + 6x + 10y chia hết cho 7

=> (x + 6x) + (4y + 10y) chia hết cho 7

=> 7x + 14y chia hết cho 7

=> 7(x + 2y) chia hết cho 7

=> Giả sử đúng

Vậy x + 4y chia hết cho 7 (đpcm)

Bài 5:

1, Ta có: \(-\left(x+2\right)^{2018}\le0\)

\(\Rightarrow-1-\left(x+2\right)^{2018}\le0\)

\(\Rightarrow A\le0\)

Dấu " = " xảy ra <=> (x + 2)2018 = 0 <=> x = -2

Vậy GTNN của A là -1 khi x = -2

2, Ta có: \(x^2\ge0\)

\(\left|2y-18\right|\ge0\)

\(\Rightarrow x^2+\left|2y-18\right|\ge0\)

\(\Rightarrow-9+x^2+\left|2y-18\right|\ge-9\)

Dấu " = " xảy ra <=> \(\left\{\begin{matrix}x^2=0\\\left|2y-18\right|=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)

Vậy GTLN của B là -9 khi \(\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)

Bài 6:

1, xy + 2x - y - 2 = 5

<=> x(y + 2) - (y + 2) = 5

<=> (x - 1)(y + 2) = 5

=> x - 1 và y + 2 thuộc Ư(5) = {\(\pm1;\pm5\)}

Ta có bảng:

x - 1 1 -1 5 -5
y + 2 5 -5 1 -1
x 2 0 6 -4
y 3 -7 -1 -3

Vậy các cặp (x;y) là (2;3) ; (0;-7) ; (6;-1) ; (-4;-3)

2, x + y = 2xy

<=> 2xy - x - y = 0

<=> 2(2xy - x - y) = 2.0

<=> 4xy - 2x - 2y = 0

<=> (4xy - 2x) - 2y - 1 = 0 - 1

<=> 2x(2y - 1) - (1 - 2y) = -1

<=> (2x - 1)(1 - 2y) = -1

=> 2x - 1 và 1 - 2y thuộc Ư(-1) = {\(\pm1\)}

Ta có bảng:

2x - 1 1 -1
1 - 2y -1 1
x 1 0
y 1 0
25 tháng 1 2017

Vậy các cặp (x;y) là (1;1) ; (0;0)

23 tháng 1 2017

bài 2: (x-3).(y+2) = -5

    Vì x, y \(\in\)Z   => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}

Ta có bảng: 

x-35-5-11
y+21-1-55
x8-224
y-1-3-73



bài 3: a(a+2)<0

TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)

TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
 

           Vậy -2<a<0

23 tháng 1 2017

Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)

TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2

TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại

                         Vậy 1<a<2

24 tháng 12 2018

1, 4\(^{x+1}\) + 4\(^0\) = 65

\(\Rightarrow\)4\(^{x+1}\) = 65 - 1

\(\Rightarrow\)x + 1      = 64 : 4

\(\Rightarrow\)x + 1      =  16

\(\Rightarrow\)x = 15

24 tháng 12 2018

2) 10 + 2x = 16\(^{^2}\): 4\(^3\)

\(\Rightarrow\)10 + 2x = 4

\(\Rightarrow\)2x = 4 - 10

\(\Rightarrow\)2x = -6

\(\Rightarrow\)x = -3

30 tháng 1 2020

b) = 3 c) = 4 d) = 2 e) = 2,-2 g)  = 5

Bài làm

a) 0 : x = 0

=> x = 0 : 0 ( vô lí )

Vậy x thuộc tập hợp rỗng.

b) 4x = 64

=> 4x = 43 

=> x = 3

Vậy x = 3

c) 2x = 16

=> 2x = 2 4 

=> x = 4

Vậy x = 4

d) 9 x - 1 = 9

=> x - 1 = 1

=> x = 2

Vậy x = 2

e) x4 = 16

=> x4 = 24 

=> x = 2

Vậy x = 2

g) 2x : 25 = 2

=> 2x - 5 = 21 

=> x - 5 = 1

=> x = 6

Vậy x = 6

5 tháng 8 2020

a. Vì \(\left|x-1\right|\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow\left|x-1\right|+\left(y+2\right)^2\ge0\forall x;y\)

\(\Rightarrow\left|x-1\right|+\left(y+2\right)^2+2020\ge2020\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\y=-2\end{cases}}}\)

Vậy Bmin = 2020 <=> x = 1 và y = - 2

b. Vì \(x^2\ge0\forall x\Rightarrow-x^2\le0\)

\(\Rightarrow-x^2+2019\le2019\)

Dấu "=" xảy ra \(\Leftrightarrow-x^2=0\Leftrightarrow x=0\)

Vậy Pmax = 2019 <=> x = 0

Vì \(\left|y-1\right|\ge0\forall y;\left(t+2\right)^4\ge0\forall t\)

\(\Rightarrow-\left|y-1\right|-\left|t+2\right|^4\le0\forall y;t\)

\(\Rightarrow-\left|y-1\right|-\left|t-2\right|^4+21\le21\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|y-1\right|=0\\\left|t+2\right|^4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y-1=0\\t+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=1\\t=-2\end{cases}}\)

Vậy Qmax <=> y = 1 và t = 2

6 tháng 8 2020

Cảm ơn bạn Death Note nha