Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
Bài 1:
A C B
Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)
Độ dài cạnh AC: 28 - 7 = 21 (cm)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
Hay \(BC^2=21^2+28^2\)
\(\Rightarrow BC^2=441+784\)
\(\Rightarrow BC^2=1225\)
\(\Rightarrow BC=35\left(cm\right)\)
Bài 2:
A B C D
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:
\(AB^2=AD^2+BD^2\)
\(\Rightarrow AD^2=AB^2-BD^2\)
Hay \(AD^2=17^2-15^2\)
\(\Rightarrow AD^2=289-225\)
\(\Rightarrow AD^2=64\)
\(\Rightarrow AD=8\left(cm\right)\)
Trong tam giác ABC có:
\(AD+DC=AC\)
\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:
\(BC^2=BD^2+DC^2\)
Hay \(BC^2=15^2+9^2\)
\(\Rightarrow BC^2=225+81\)
\(\Rightarrow BC^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)
A B C M G
a. áp dụng dl Pytago ta có
BC^2= AB^2+AC^2
BC^2= 8^2+15^2=64+225=289(cm)
=> BC= căn 289=17cm
b. vì trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền nên
AM= 1/2BC= BC/2=8.5cm
AG= 2/3 AM = 2/3 . 8.5 xấp xỉ 5.7
a) Ta có: AC2+BC2=82+152=289
AB2=172=289
=> AC2+BC2=AB2
=> \(\Delta ABC\)vuông tại C (theo định lý Py-ta-go đảo)
=> đpcm
b) Ta có \(\Delta ACD\)vuông tại C
=> AC2+DC2=AD2
= 82+62= 100
=> AD=\(\sqrt{100}\)=10(cm)
=> Chu vi \(\Delta ABD\)là:
AD+AB+DC+CB=10+6+15+17=48(cm)
Vậy....
a)Xét ΔABC có: \(AB^2+AC^2=20^2+15^2=625\)
\(BC^2=25^2=625\)
=>ΔABC vuông tại A ( THEO ĐỊNH LÝ PYTAGO ĐẢO)
b)Xét ΔABH vuông tại H(gt)
=> \(AB^2=HB^2+AH^2\) (theo định lý pytago)
=> \(HB^2=AB^2-AH^2=20^2-12^2=256\)
=>HB =16
Có BC=BH+HC
=>HC=BC-BH=25-16=9
A B C H
a) Xét \(\Delta ABC \) có:
\(BC^2=25^2=625\)
\(AB^2+AC^2=20^2+15^2=625\)
\(\Rightarrow BC^2=AB^2+AC^2\left(=625\right)\)
\(\Rightarrow\)\(\Delta ABC\) vuông tại A.
b) Xét \(\Delta ABH\) có: \(AH \perp BC\)
\(\Rightarrow\) \(AB^2=AH^2+BH^2\) (Định lí Pytago)
\(20^2=12^2+BH^2\left(AB=20cm\left(gt\right);AH=12cm\left(gt\right)\right)\)
\(\Rightarrow BH^2=20^2-12^2\)
\(BH^2=256\)
\(\Rightarrow BH=\sqrt{256}=16\left(cm\right)\)
Ta có:
\(BH+HC=BC\) (H nằm giữa B và C)
\(16+HC=25\left(BH=16cm\left(cmt\right);BC=25cm\left(gt\right)\right)\)
\(\Rightarrow HC=25-16\)
\(HC=9\left(cm\right)\)
Bài 2:
a: Đây là tam giác vuông
b: Đây ko là tam giác vuông