Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
gọi số tiền lãi của mỗi người là a,b,c (a,b,c > 0)
Ta có \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\\a+b+c=36\end{cases}}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{36}{10}=\frac{18}{5}\)
Do đó \(a=\frac{18}{5}.2=\frac{36}{5}=7,2\)(triệu đồng)
\(b=\frac{18}{5}.3=10,8\)(triệu đồng)
\(c=\frac{18}{5}.5=18\)(triệu đồng)
Vậy .........
Gọi \(a,b,c\)( triệu đồng )lần lượt là 3 tiền lãi của các đơn vị \(\left(0< a,b,c< 450\right)\)
Theo đề bài ,ta có :
\(\frac{a}{3}+\frac{b}{5}+\frac{c}{7}=450.000.000\)
Theo dãy tính chất tỉ số bằng nhau ta có :
\(\frac{a}{3}+\frac{b}{5}+\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{450}{15}=30\)
Vì đó ta suy ra :
\(\frac{a}{3}=30=a=30.3=90\)
\(\frac{b}{5}=30=b=30.5=150\)
\(\frac{c}{7}=30=c=30.7=210\)
Câu 1:
- Gọi số tiền lãi mà cả mỗi đơn vị sản xuất nhận được lần lượt là x, y, z tỉ lệ với các số 7; 8; 9.
Ta có: x/7= y/8= z/9 và x+ y+ z= 720 000 000.
=> x/7+ y/8+ z/9= 720 000 000/24= 30 000 000
<=> x/7= 30 000 000 nên x= 7×30 000 000= 210 000 000
y/8= 30 000 000 nên y= 8×30 000 000= 240 000 000
z/9= 30 000 000 nên z= 9×30 000 000= 270 000 000
Vậy, đơn vị sản xuất đầu tiên nhận được 210 000 000 triệu đồng tiền lãi; đơn vị sản xuất thứ hai nhận được 240 000 000 triệu đồng tiền lãi; đơn vị sản xuất thứ ba nhận được 270 000 000 triệu đồng tiền lãi.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)
Vậy ...
Giải : Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó, ta có : \(\frac{bk.dk}{bd}=\frac{bdk^2}{bd}=k^2\)(1)
\(\frac{\left(bk\right)^2-\left(dk\right)^2}{b^2-d^2}=\frac{b^2.k^2-d^2.k^2}{b^2-d^2}=\frac{\left(b^2-d^2\right).k^2}{b^2-d^2}=k^2\)(2)
Từ (1) và (2) suy ra : \(\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)
Gọi số tiền vốn là a,b,c
ĐK: a,b,c < 6300
a, b, c thuộc N sao
Theo đề ta có:
a/5 = b/7 = c/9
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a/5 = b/7 = c/9 = a+b+c/5+7+9=6300/21=300
a/5=300 => a=5.300=1500
b/7=300 => b=7.300=2100
c/9=300 => c=9.300=2700