Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a = BC = 20;\;b = AC = 15;\;c = AB = 12.\)
a) Áp dụng định lí cosin trong tam giác ABC, ta có:
\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\;\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\)
\( \Rightarrow \cos A = \frac{{{{15}^2} + {{12}^2} - {{20}^2}}}{{2.15.12}};\;\cos B = \frac{{{{20}^2} + {{12}^2} - {{15}^2}}}{{2.20.12}}\)
\( \Rightarrow \cos A = - \frac{{31}}{{360}};\;\cos B = \frac{{319}}{{480}}\)
\( \Rightarrow \widehat A = 94,{9^o};\;\widehat B = 48,{3^o}\)
\( \Rightarrow \widehat C = {180^o} - \left( {94,{9^o} + 48,{3^o}} \right) = 36,{8^o}\)
b)
Diện tích tam giác ABC là: \(S = \frac{1}{2}.bc.\sin A = \frac{1}{2}.15.12.\sin 94,{9^o} \approx 89,7.\)
\(BC=AB^2+AC^2-2\cdot AB\cdot AC\cdot\cos A=148\left(cm\right)\)
Chọn B.
Theo định lí côsin ta có
BC2 = AB2 + AC2 - 2.AB.AC.cos A = 102 + 42 - 2.10.4.cos 60 = 76
Suy ra BC ≈ 8,72
Suy ra chu vi tam giác là 10 + 4 + 8,72 = 22,72
\(a,\overrightarrow{AB}=\left(2;10\right)\)
\(\overrightarrow{AC}=\left(-5;5\right)\)
\(\overrightarrow{BC}=\left(-7;-5\right)\)
\(b,\) Thiếu dữ kiện
\(c,Cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=\dfrac{\left|2\left(-5\right)+10.5\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-5\right)^2+5^2}}=\dfrac{2\sqrt{13}}{13}\)
\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{AC}\right)=56^o18'\)
\(Cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{\left|2\left(-7\right)+10\left(-5\right)\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-7\right)^2+\left(-5\right)^2}}\)
\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=43^o9'\)
Áp dụng định lý hàm cos ta có \(CA^2=AB^2+BC^2-2AB.BC.cos\widehat{ABC}=2^2+3^2-2.2.3.cos\widehat{60o}=4+9-6=7\Rightarrow CA=\sqrt{7}\).
\(P_{ABC}=AB+BC+CA=2+3+\sqrt{7}=5+\sqrt{7}\). (đvđd)
\(S_{ABC}=\dfrac{1}{2}AB.BC.sin\widehat{ABC}=\dfrac{1}{2}.2.3.sin60^o=\dfrac{1}{2}.6.\dfrac{\sqrt{3}}{4}=\dfrac{3\sqrt{3}}{4}\). (đvdt)
a: vecto AB=(1;1)
vecto AC=(2;6)
vecto BC=(1;5)
b: \(AB=\sqrt{1^2+1^2}=\sqrt{2}\)
\(AC=\sqrt{2^2+6^2}=2\sqrt{10}\)
\(BC=\sqrt{1^2+5^2}=\sqrt{26}\)
=>\(C=\sqrt{2}+2\sqrt{10}+\sqrt{26}\)
c: Tọa độ trung điểm của AB là:
x=(1+2)/2=1,5 và y=(-1+0)/2=-0,5
Tọa độ trung điểm của AC là;
x=(1+3)/2=2 và y=(-1+5)/2=4/2=2
Tọa độ trung điểm của BC là:
x=(2+3)/2=2,5 và y=(0+5)/2=2,5
d: ABCD là hình bình hành
=>vecto AB=vecto DC
=>3-x=1 và 5-y=1
=>x=2 và y=4
\(\cos A=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{8^2+10^2-13^2}{2\cdot8\cdot10}=-\dfrac{1}{32}< 0\)
nên \(\widehat{A}>90^0\)
=>ΔABC tù