K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
MN
4 tháng 4 2019
\(\Delta'=\left(m-1\right)^2-m^2+m-1=m^2-2m+1-m^2+m-1=-m.\)
Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow-m\ge0\Leftrightarrow m\le0\)
Theo vi ét:
\(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1.x_2=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\)
\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1+x_2+2\left|x_1.x_2\right|=16\)
\(\Leftrightarrow1-2m+2\left|m^2-m+1\right|=16\)
\(\Leftrightarrow1-2m+2m^2-2m+2=16\)(Vì \(m^2-m+1>0\Rightarrow\left|m^2-m+1\right|=m^2-m+1\))
\(\Leftrightarrow2m^2-4m-13=0\)
Đến đây bạn tự giải \(\Delta\)tìm m đối chiếu điều kiện là ok.
1/
a) Δ' = b'2 - ac = (3 - m)2 - (m - 1)(m - 4) = 9 - 6m + m2 - m2 + 4m + m - 4
= 5 - m
Để pt (1) có nghiệm duy nhất thì Δ' = 0 ⇔ 5 - m = 0 ⇔ m = 5
b) Để pt (1) có hai nghiệm x1; x2 thì Δ ≥ 0 ⇔ 5 - m ≥ 0 ⇔ m ≤ 5
Áp dụng Vi-et ta có \(\left\{{}\begin{matrix}x_1+x_2=\frac{-2\left(3-m\right)}{m-1}\\x_1\cdot x_2=\frac{m-4}{m-1}\end{matrix}\right.\)
Ta có 3(x1 + x2) = 5x1x2 = \(3\cdot\frac{-2\left(3-m\right)}{m-1}=5\cdot\frac{m-4}{m-1}\)
⇔ \(\frac{-6\left(3-m\right)}{m-1}=\frac{5\left(m-4\right)}{m-1}\)
⇔ \(-6\left(3-m\right)=5\left(m-4\right)\)
⇔ \(-18+6m=5m-20\)
⇔ \(m=-2\) (tm)
Vậy với m = -2 thì pt (1) có hai nghiệm x1; x2 thỏa mãn 3(x1 + x2) = 5x1x2