\(A=\dfrac{2}{x-1}+\dfrac{2\left(x+1\right)}{x^2+x+1}+\dfrac{x^2-10...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

a.b. \(A=\dfrac{2}{x-1}+\dfrac{2\left(x+1\right)}{x^2+x+1}+\dfrac{x^2-10x+3}{x^3-1}\) ( x ≠ 1 )

\(A=\dfrac{2\left(x^2+x+1\right)+2\left(x+1\right)\left(x-1\right)+x^2-10x+3}{x^3-1}\)

\(A=\dfrac{2x^2+2x+2+2x^2-2+x^2-10x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\dfrac{5x^2-8x+3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{5x^2-5x-3x+3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{5x\left(x-1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{\left(x-1\right)\left(5x-3\right)}{x^2+x+1}=\dfrac{5x-3}{x^2+x+1}\)

c.

\(A=\dfrac{5x-3}{x^2+x+1}\)

\(\Leftrightarrow A\left(x^2+x+1\right)=5x-3\)

\(\Leftrightarrow Ax^2+Ax+A-5x+3=0\)

\(\Leftrightarrow Ax^2+\left(A-5\right)x+A+3=0\)

( \(a=A,b=A-5,c=A+3\) )

* A = 0 \(\Rightarrow x=\dfrac{3}{5}\)

* \(A\ge0\)

\(\Rightarrow\Delta=b^2-4ac\ge0\)

\(\Rightarrow\left(A-5\right)^2-4.A\left(A-3\right)\ge0\)

\(\Rightarrow A^2-10A+25-4A^2-12A\ge0\)

\(\Rightarrow-3A^2-22A+25\ge0\)

\(\Rightarrow-\dfrac{25}{4}\le A\le1\)

\(\Rightarrow Min_A=-\dfrac{25}{3}\Leftrightarrow x=\dfrac{-b}{2a}=\dfrac{\dfrac{25}{3}+5}{2.\left(\dfrac{-25}{3}\right)}=-\dfrac{4}{5}\)

19 tháng 8 2018

giúp với

19 tháng 8 2018

giúp vs

20 tháng 8 2018

a)  ĐKXĐ:  \(x\ne1\)

b)  \(A=\frac{2}{x-1}+\frac{2\left(x+1\right)}{x^2+x+1}+\frac{x^2-10x+3}{x^3-1}\)

\(=\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2-10x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{2x^2+2x+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2-10x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{5x^2-8x+3}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{\left(x-1\right)\left(5x-3\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{5x-3}{x^2+x+1}\)

19 tháng 8 2018

giúp vs

Cho các biểu thức: A = \(\dfrac{5}{x-3}+\dfrac{4}{x+3}+\dfrac{21-x}{x^2-9}\) với x \(\ne\) \(\pm\) 3. a) Rút gọn biểu thức A. b) Tính giá trị của biểu thức A khi x = 5. c) Tifmg ía trị của x để A = 2. B = \(\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\) a) Tìm điều kiện của x để giá trị của biểu thức B được xác định. b) Rút gọn biểu thức B. c) Tìm giá trị nguyên của x để \(\dfrac{1}{B}\)...
Đọc tiếp

Cho các biểu thức:

A = \(\dfrac{5}{x-3}+\dfrac{4}{x+3}+\dfrac{21-x}{x^2-9}\) với x \(\ne\) \(\pm\) 3.

a) Rút gọn biểu thức A. b) Tính giá trị của biểu thức A khi x = 5. c) Tifmg ía trị của x để A = 2.

B = \(\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)

a) Tìm điều kiện của x để giá trị của biểu thức B được xác định. b) Rút gọn biểu thức B. c) Tìm giá trị nguyên của x để \(\dfrac{1}{B}\) có giá trị là số nguyên.

C = \(\left(\dfrac{x^2+2}{x^3-1}+\dfrac{x}{x^2+x+1}-\dfrac{1}{x-1}\right):\dfrac{x-1}{2}\)

a) Tìm điều kiện của x để giá trị của biểu thức C được xác định. b) Rút gọn biểu thức C. c) Tifmg ía trị của x để biểu thức C có giá trị lớn nhất.

(P/S: mọi người giúp mk nha. Bài này mk đang cần gấp lắm, nhớ làm đầy đủ nha. Ai nhanh mk tick.)

1
29 tháng 11 2022

Bài 3:

a: DKDXĐ: x<>1

b: \(=\dfrac{x^2+2+x^2-x-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{2}{x-1}=\dfrac{x^2-2x+1}{\left(x-1\right)^2}\cdot\dfrac{2}{x^2+x+1}=\dfrac{2}{x^2+x+1}\)

c: Để C lớn nhất thì \(A=x^2+x+1_{MIN}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)

Dấu = xảy ra khi x=-1/2

26 tháng 7 2018

a/ (1+x2).(1+x)

b/A=\(\dfrac{-68}{27}\)

c/x>-1 và x2 >1

phần giải tự lm nhé

AH
Akai Haruma
Giáo viên
27 tháng 7 2018

Lời giải:

a) ĐKXĐ: \(x\neq \pm 1\)

Ta có: \(A=\left(\frac{1-x^3}{1-x}-x\right):\frac{1-x^2}{1-x-x^2+x^3}\)

\(=\left(\frac{(1-x)(1+x+x^2)}{1-x}-x\right): \frac{1-x^2}{(1-x)-x^2(1-x)}\)

\(=(1+x+x^2-x):\frac{1-x^2}{(1-x)(1-x^2)}=(1+x^2):\frac{1}{1-x}=(x^2+1)(1-x)\)

b) Tại \(x=-1\frac{2}{3}=\frac{-5}{3}\Rightarrow A=(\frac{25}{9}+1)(1-\frac{-5}{3})=\frac{272}{27}\)

c) Để \(A=(x^2+1)(1-x)>0\)

\(\Rightarrow 1-x>0\) (do \(x^2+1>0\) )

\(\Rightarrow x< 1\)

Vậy \(x<1; x\neq -1\)

24 tháng 4 2017

Giải bài 14 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 14 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

GV
24 tháng 4 2017

Lời giải của bạn Nhật Linh đúng rồi, tuy nhiên cần thêm điều kiện để A có nghĩa: \(x\ne\pm2\)

25 tháng 3 2018

\(A=\left(\dfrac{1}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{6x+3}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right):\left(x+2\right)\)\(A=\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x^2-x+1\right)\left(x+2\right)}\)

a) \(A=\left\{{}\begin{matrix}x\ne-1;-2\\\dfrac{1}{x^2-x+1}\end{matrix}\right.\)

b)

\(A>1;\dfrac{1}{x^2-x+1}>1\Leftrightarrow x^2-x< 0\Leftrightarrow0< x< 1\)

\(P=\dfrac{1}{x^2-x+1}.\dfrac{x^3-x^2+x}{\left(x+1\right)^2}=\dfrac{x}{\left(x+1\right)^2}\)

x>0 => P >0 đang tìm Giá trị LN => chỉ xét P>0 <=> x>0

\(\dfrac{1}{P}=\dfrac{\left(x+1\right)^2}{x}=x+2+\dfrac{1}{x}\)

áp co si hai số dương x ; 1/x

\(\dfrac{1}{P}\ge2.\sqrt{x.\dfrac{1}{x}}+2=4\Rightarrow P\le\dfrac{1}{4}\)

đẳng thức khi x =1/x => x=1 thỏa mãn đk của x

\(MaxP=\dfrac{1}{4}\)