Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 2 + 22 + .... + 22014
Ta có :
a ) 2A = 2 ( 1 + 2 + 22 + .... + 22014 )
= 2 + 22 + 24 + ... + 22015
2A - A = ( 2 + 22 + 24 + ... + 22015 ) - ( 1 + 2 + 22 + .... + 22014 )
A = 22015 - 1
b ) A = ( 1 + 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 + 29 ) + .... + ( 22010 + 22011 + 22012 + 22013 + 22014 )
= ( 1 + 2 + 22 + 23 + 24 ) + 25( 1 + 2 + 22 + 23 + 24 ) + .... + 22010( 1 + 2 + 22 + 23 + 24 )
= ( 1 + 2 + 4 + 8 + 16 ) + 25 ( 1 + 2 + 4 + 8 + 16 ) + ... + 22010( 1 + 2 + 4 + 8 + 16 )
= 31 + 25.31 + .... + 31.22010
= 31( 1 + 25 + .... + 22010 ) chia hết cho 31 ( đpcm )
a,A = 1 + 2 + 22 + 23 +.... + 22013 + 22014
2A = 2 + 22 + 23 + ...... + 22013 + 22014 + 22015
A = ( 2 + 22 + 23 + ..... + 22013 + 22014 + 22015 ) - ( 1 + 2 + 22 + 23 + ..... + 22013 + 22014 )
A = 22015 - 1
b, A = 1 + 2 + 22 + 23 + ... + 22013 + 22014
= ( 1 + 2 + 22 + 23 + 24 ) + .... + ( 22010 + 22011 + 22012 + 22013 + 22014 )
= 31 + ..... + 22010.( 1 + 2 + 22 + 23 + 24 )
= 31 + ..... + 22010 . 31
= 31.1 + ..... + 22010 . 31
= 31. ( 1 + .... + 22010 ) chia hết cho 31
=> A chia hết cho 31
a) \(A=1+2+2^2+2^3+....+2^{2014}\)
\(\Leftrightarrow\)\(2A=2+2^2+2^3+2^4+...+2^{2015}\)
\(\Leftrightarrow\)\(2A-A=\left(2+2^2+2^3+...+2^{2015}\right)-\left(1+2+2^2+...+2^{2014}\right)\)
\(\Leftrightarrow\)\(A=2^{2015}-1\)
b) \(A=1+2+2^2+2^3+...+2^{2014}\)
\(=\left(1+2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8+2^9\right)\)\(+...+\left(2^{2010}+2^{2011}+2^{2012}+2^{2013}+2^{2014}\right)\)
\(=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)\)\(+...+2^{2010}\left(1+2+2^2+2^3+2^4\right)\)
\(=\left(1+2+2^2+2^3+2^4\right)\left(1+2^5+...+2^{2010}\right)\)
\(=31\left(1+2^5+...+2^{2010}\right)\) \(⋮31\)
Ta có ﴾6x+11y﴿ =31﴾x+6y﴿‐25﴾x+7y﴿
Do 6x+11y và 31﴾x+6y﴿ đều chia hết cho 31
=> 25﴾x+7y﴿ chia hết cho 31
Do ﴾25,31﴿=1 ﴾vì 25;31 là hai số nguyên tố cùng nhau﴿
Nên x+7y chia hết cho 31
Vậy ...
1) Xét hiệu:
6 x (a+7b)-(6a+11b)
= 6a+42b-6a-11b
=31b
Vs b thuộc N thì 31b chia hết cho 31
=>6 x (a+7b)-(6a+11b) chia hết cho 31
Mà a+7b chia hết cho 31 nên 6 x (a+7b) chia hết cho 31
=>6a+11b chia hết cho 31
Bạn tham khảo ở đây: Câu hỏi của phương vy - Toán lớp 6 - Học toán với OnlineMath
a)Xét \(2A=2+2^2+....+2^{2015}\)
nên \(2A-A=2^{2015}-1\)
=>\(A=2^{2015}-1\)
b)Ta có :\(2^5=32\equiv-1\left(mod31\right)\)
=>\(2^{2015}\equiv-1\left(mod31\right)\)
=>\(2^{2015}-1\equiv-2\left(mod31\right)\)(kiểm tra lại đề bài đi bạn)