Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b:Ta có: \(AB\cdot HE+AC\cdot HF\)
\(=AH\cdot HB+AH\cdot HC\)
\(=AH\cdot BC\)
\(=AB\cdot AC\)
a, áp dụng hệ thức lượng trong tam giác : AC^2 = HC.BC => AC = căn ( HC.BC) = 8 (cm )
AB^2 = HB.BC => AB = căn( HB.BC) = 6 ( cm )
AH.BC = AB.AC => AH = AB.AC : BC =4,8(cm)
b, Trong tam giác vuông HAB, đường cao HE ta có : HA^2 = AB.AE (1)
Trong tam giác vuông HAC, đường cao HF ta có : HA^2 = AC.AF (2)
Từ (1) và (2) ta có : AB.AE = AC.AF ( = AH^2) ( đpcm)
Hình em tự vẽ nhé
a) \(BC=BH+HC=3,6+6,4=10\left(cm\right)\)
Tam giác ABC vuông tại A, đường cao AH có:
\(AB^2=BC.BH\\ \Rightarrow AB=\sqrt{BC.BH}=\sqrt{10.3,6}=6\left(cm\right)\)
Tương tự:
\(AC=\sqrt{BC.CH}=\sqrt{10.6,4}=8\left(cm\right)\)
Ta có: \(AH^2=BH.CH\)
\(\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3,6.6,4}=4,8\left(cm\right)\)
b) Tứ giác AEHF là hình chữ nhật (tứ giác có 3 góc vuông) nên EF = AH = 4,8 (cm)
c) Tam giác AHB vuông tại H có EH là đường cao (gt) \(\Rightarrow AH^2=AB.AE\)
Tương tự tam giác AHC ta có \(AH^2=AC.AF\Rightarrow AB.AE=AC.AF\)
Xét tam giác AEF và tam giác ABC có:
\(\widehat{FAE}.chung\)
\(\dfrac{AF}{AB}=\dfrac{AE}{AC}\left(vì.AB.AE=AC.AF\right)\)
Do đó tam giác AEF đồng dạng tam giác ABC.
a) Tính độ dài các đoạn thẳng: AcB, AC, AH.
Có: AH2 = HB . HC
=> AH = \(\sqrt{3,6.6,4}=4,8\) (cm)
BC = HB + HC = 3,6 + 6,4 = 10 (cm)
=> AB2 = HB . BC
=> AB = \(\sqrt{3,6.10}=6\) (cm)
=> AC = \(\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8\) (cm)
b/ Chứng minh rằng: AB.AE = AC.AF.
Gọi I là giao điểm giữa AH và EF
Có: AFE + AEF = 900 (1)
ABH + BAH = 900 (2)
mà AEHF là hình chữ nhật (vì A = E = F = 900)
=> tam giác AIE cân
=> BAH = AEF
=> (1) => AFE + BAH = 900 (3)
Từ (2) và (3) => ABH = AFE
Xét tam giác ABC và tam giác AFE có:
góc A chung
ABC = AFE (chứng minh trên)
=> \(\Delta ABC\Omega\Delta AFE\) (gg)
=> \(\frac{AB}{AF}=\frac{AC}{AE}\Rightarrow AB.AE=AC.AF\)(đpcm)