Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nhé!
a, MN;MP là 2 tiếp tuyến của đường tròn (O) (gt)
\(\Rightarrow\widehat{ONM}=\widehat{OPM}=90^0\Rightarrow\) Tứ giác MNOP nội tiếp ngược
\(\Rightarrow\widehat{NMO}=\widehat{NPO}\)( hai góc nội tiếp cùng chắn chung NO)
b, Gọi C là trung điểm dây AB ta có C cố định
(d) không qua O nên \(OC\perp AB\)
\(\widehat{OCM}=\widehat{OMN}=\widehat{OPM}=90^0\)
\(\Rightarrow\) C ; N ; P thuộc đường tròn đường kính OM
\(\Rightarrow\) C ; N ; P ; O ; M cùng thuộc một đường tròn
Mà O và C cố định
Do đó đường tròn ngoại tiếp tam giác MNP đi qua 2 điểm cố định O và C khi M lưu động trên đường thẳng (d)
c, Tứ giác MNOP là hình vuông
\(\Leftrightarrow\) Hình thoi MNOP có \(\widehat{ONM}=90^0\)
\(\Leftrightarrow\) Tứ giác MNOP có MN = ON = OP = PM và \(\widehat{ONM}=90^0\)
\(\Leftrightarrow\)Tam giác OMN vuông cân tại N \(\Leftrightarrow\) \(OM=ON\sqrt{2}=R\sqrt{2}\)
\(\Leftrightarrow\) M là giao điểm của đường tròn tâm O bán kính \(R\sqrt{2}\) và đường thẳng (d)
d, từ nghĩ đã...
\(\Leftrightarrow\) MN = ON = R ; \(\widehat{ONM}=90^0\)
cái dòng cuối cùng của ý d là dòng thứ 4 của ý c nhé, bị nhầm đó
d, Làm tiếp:
Giả sử đoạn thẳng OM cắt đường tròn (O) tại I'
OM là tia phân giác \(\widehat{NOP}\)( vì MN;MP là 2 tiếp tuyến của (O))
\(\Rightarrow\widehat{NOM}=\widehat{POM}\Rightarrow\widebat{NI'}=\widebat{PI'}\)
\(sđ\widehat{NPI'}=\frac{1}{2}sđ\widebat{NI'}\) ; \(sđ\widehat{MPI'}=\frac{1}{2}sđ\widehat{PI'}\)
Do đó \(\widehat{NPI'}=\widehat{MPI'}\Rightarrow\) PI' là tia phân giác \(\widehat{MPN}\)
\(\Delta MPN\)có MI' là tia phân giác \(\widehat{NMP}\)( vì MN và MP là 2 tiếp tuyến ) và PI' là tia phân giác \(\widehat{MPN}\)nên I' là tâm đường tròn nội tiếp tam giác MNP
Do đó \(I'\equiv I\)mà I' thuộc đường tròn (O;R)
Mặt khác : O , I cùng thuộc nửa mặt phẳng bờ d
Do đó I lưu động trên cung lớn AB của đưởng tròn tâm O bán kính R
a, Vì MA = MC ( tc tiếp tuyến )
OA = OC = R
Vậy OM là đường trung trực AC hay MO vuông AC
Ta có : ^ACB = 900 ( góc nội tiếp chắn nửa đường tròn )
hay AC vuông BC
lại có AC vuông MO ( cmt )
=> OM // BC ( tc vuông góc đến song song )
b, Vì MA là tiếp tuyến với A là tiếp điểm suy ra ^MAO = 900
Áp dụng định lí Pytago tam giác MAO vuông tại A
\(MO=\sqrt{AM^2+AO^2}=\sqrt{64+36}=10\)cm
Gọi MO giao AC = T
Áp dụng hệ thức : \(AT.MO=AM.AO\Rightarrow AT=\frac{AM.AO}{MO}=\frac{48}{10}=\frac{24}{5}\)cm
Vì MO là đường trung trực nên AT = TC
=> AC = 2AT = 24/5 . 2 = 48/5 cm
b) Phương trình hoành độ giao điểm: x2 = mx + m + 3
<=> x2 - mx - (m+3) = 0 (*)
\(\Delta\) = (-m)2 - 4. [-(m+3)] = m2 + 4m + 12 = m2 + 4m + 4 + 8 = (m+2)2 + 8 \(\ge\) 0 + 8 > 0 với mọi m
=> (*) luôn có hai nghiệm hai nghiệm phân biệt
=> Đường thằng d luôn cătd đths y = x2 tại hai điểm phân biệt
(Chú ý: Số giao điểm của 2 đồ thị chính là số nghiệm của của phương trình hoành độ)
c) OM cắt CD tại F
Ta có OK.OM=OC2=R2OK.OM=OC2=R2
ΔOHM∼ΔOKF⇒OHOK=OMOFΔOHM∼ΔOKF⇒OHOK=OMOF
⇒OF=OK.OMOH=R2OH⇒OF=OK.OMOH=R2OH (không đổi)
mà OF nằm trên đường cố định nên F là điểm cố định khi M thay đổ
c)OM cắt CD tại F
Ta có \(OK.OM=OC^2=R^2\)
\(\Delta OHM~\Delta OKF\Rightarrow\frac{OH}{OK}=\frac{OM}{OF}\)
\(OF=\frac{OK.OM}{OH}=\frac{R^2}{OH}\)( không đổi)
mà OF nằm trên đường cố định nên F là điểm cố định khi M thay đổi