Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 câu g bạn kia làm sai mình sửa lại nhá
\(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2\right)-12c^2\)
\(=3\left(a-b\right)^2-12c^2\)
\(=3\left[\left(a-b\right)^2-4c^2\right]\)
\(=3\left(a-b-2c\right)\left(a-b+2c\right)\)
Để mình làm tiếp cho :))
Bài 2 :
Câu a : \(37,5.8,5-7,5.3,4-6,6.7,5+1,5.37,5\)
\(=\left(37,5.8,5+1,5.37,5\right)-\left(7,5.3,4+6,6.7,5\right)\)
\(=37,5\left(8,5+1,5\right)-7,5\left(3,4+6,6\right)\)
\(=37,5.10-7,5.10\)
\(=10.30=300\)
Câu b : \(35^2+40^2-25^2+80.35\)
\(=\left(35^2+80.35+40^2\right)-25^2\)
\(=\left(30+45\right)^2-25^2\)
\(=75^2-25^2\)
\(=\left(75+25\right)\left(75-25\right)\)
\(=100.50=5000\)
Bài 3 :
Câu a : \(x^3-\dfrac{1}{9}x=0\)
\(\Leftrightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{1}{9}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\dfrac{1}{3}\end{matrix}\right.\)
Câu b : \(2x-2y-x^2+2xy-y^2=0\)
\(\Leftrightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(2-x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\2-x+y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y\\x+y=2\Rightarrow x=2-y\end{matrix}\right.\)
Câu c :
\(x\left(x-3\right)+x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
\(x^2\left(x-3\right)+27-9x=0\)
\(\Leftrightarrow x^2\left(x-3\right)-9\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\pm3\end{matrix}\right.\)
Bài 4 :
Câu a :
\(x^2-4x+3\)
\(=x^2-x-3x+3\)
\(=\left(x^2-x\right)-\left(3x-3\right)\)
\(=x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x-1\right)\left(x-3\right)\)
Câu b :
\(x^2+x-6\)
\(=x^2-2x+3x-6\)
\(=x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(x+3\right)\)
Câu c :
\(x^2-5x+6\)
\(=x^2-2x-3x+6\)
\(=\left(x^2-2x\right)-\left(3x-6\right)\)
\(=x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(x-3\right)\)
Câu d :
\(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
a) 2x(3x^2 -5x + 3) = 6x^3 - 10x^2 + 6x
b) -2x(x^2 +5x-3) = -2x^3 - 10x^2 + 6x
c) 2 dấu trừ liền nhau??
bài 2:
a) \(\left(2x-1\right)\left(x^2+1\right)=2x^3-x^2+2x-1\)
b) \(-\left(5x-4\right)\left(2x+3\right)=-\left(10x^2-8x+15x-12\right)=-10x^2-7x+12\)
c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)=8x^3-4x^2y-4x^2y+2xy^2+2xy^2-y^3=8x^3-8x^2y+2xy^2-y^3\)
d) \(\left(3x-4\right)\left(x+4\right)+\left(5-x\right)\left(2x^2+3x-1\right)=3x^2+8x-16+10x^2-2x^3+15x-3x^2-5+x=10x^2+24x-21\)
e) \(7x\left(x-4\right)-\left(7x+3\right)\left(2x^2-x+4\right)=7x^2-28x-\left(14x^3+6x^2-7x^2-3x+28x+12\right)=-14x^2+8x^2-53x-12\)
a: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
b: \(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}\)
\(=\dfrac{y-x}{xy\left(y-x\right)}=\dfrac{1}{xy}\)
c: \(=\dfrac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(1-2x\right)}\)
\(=\dfrac{3\left(1+2x\right)}{2\left(x+4\right)}\)
d: \(=\dfrac{12x}{8x^3}\cdot\dfrac{15y^4}{5y^3}=\dfrac{3}{2x^2}\cdot3y=\dfrac{9y}{2x^2}\)
f: \(=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}\cdot\dfrac{x+4}{2\left(x-2\right)}=\dfrac{x+2}{6}\)
g) \(\left(x+3\right).\left(x^2+3\right).\left(x^2+3x-5\right)\)
\(\left(x^3+3x+3x^2+9\right).\left(x^2+3x-5\right)\)
\(\left(x^5+3x^4-5x^3+3x^3+9x^2-15x+3x^4+9x^3-15x^2+9x^2+27x-45\right)\)
\(x^5+6x^4+x^3+3x^2+12x-45\)
h) \(\left(xy-2\right)\left(x^3-2x-6\right)\)
\(xyx^3-xy.2x-6xy-2x^3-2.\left(-2x\right)-2.\left(-6\right)\)
\(x^4y-2x^2y-6xy-2x^3+4x+12\)
i) \(\left(5x^3-2^2+2x-3\right)\left(4x^2-x+2\right)\)
\(\left(5x^3-4+2x-3\right)\left(4x^2-x+2\right)\)
\(20x^5-5x^4+10x^3-28x^2+7x-14+8x^3-2x^2+4x\)
\(20x^5-5x^4+18x^3-30x^2+11x-14\)
_Có sai sót j bỏ qua cho e :v _
a) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{8y}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-8y}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(=\dfrac{\left(2x+y\right)\left(2x+y\right)-8yx+\left(2x-y\right)\left(2x-y\right)}{x\left(2x+y\right)\left(2x-y\right)}\)
\(=\dfrac{8x^2-8xy+2y^2}{x\left(2x+y\right)\left(2x-y\right)}\)
\(=\dfrac{2\left(4x^2-4xy+y^2\right)}{x\left(2x+y\right)\left(2x-y\right)}\)
\(=\dfrac{2\left(2x-y\right)^2}{x\left(2x+y\right)\left(2x-y\right)}\)
\(=\dfrac{2\left(2x-y\right)}{x\left(2x+y\right)}\)
b) \(\dfrac{1}{x^2+3x+2}+\dfrac{2x}{x^2+4x+3}+\dfrac{1}{x^2+5x+6}\)
\(=\dfrac{1}{x^2+x+2x+2}+\dfrac{2x}{x^2+x+3x+3}+\dfrac{1}{x^2+2x+3x+6}\)
\(=\dfrac{1}{x\left(x+1\right)\left(x+2\right)}+\dfrac{2x}{x\left(x+1\right)+3\left(x+1\right)}+\dfrac{1}{x\left(x+2\right)+2\left(x+2\right)}\)
\(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{2x}{\left(x+1\right)\left(x+3\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{x+3+2x\left(x+2\right)+x+1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{x+3+2x^2+4x+x+1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{2x^2+6x+4}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{2\left(x^2+3x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{2\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{2}{x+3}\)
a) 3x(4x - 3) - 2x(5 - 6x) = 0
=> 6x2 - 9x - 10x + 12x2 = 0
=> 18x2 - 19x = 0
=> x(18x - 19) = 0
=> \(\orbr{\begin{cases}x=0\\18x-19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{18}\end{cases}}\)
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
=> 10x - 15 + 4x2 - 8x + 6x - 4x2 = 0
=> 8x - 15 = 0
=> 8x = 15
=> x = 15 : 8 = 15/8
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
=> 6x - 3x2 + 2x2 - 2x = 5x2 + 15x
=> 4x - x2 - 5x2 - 15x = 0
=> -6x2 - 11x = 0
=> -x(6x - 11) = 0
=> \(\orbr{\begin{cases}-x=0\\6x-11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{11}{6}\end{cases}}\)
a) \(3x\left(4x-3\right)-2x\left(5-6x\right)=0\)
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow-19x=0\Leftrightarrow x=0\)
b) \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)
\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)
\(\Leftrightarrow8x-15=0\Leftrightarrow x=\frac{15}{8}\)
\(\left(xy-2\right)\left(x^3-2x-6\right)=x^4y-2x^2y-6xy-2x^3+4x+12\)
\(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)\)
\(=20x^5-5x^4+10x^3-4x^4+x^3-2x^2+8x^3-2x^2+4x-12x^2+3x-6\)
\(=20x^5-9x^4+19x^3-16x^2+7x-6\)