K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2018

Bài làm:

Bài 1:

a)\(\sqrt{16}.\sqrt{25}+\sqrt{196}:\sqrt{49}\)

= 4.5 + 14 : 7

= 20 + 2

= 22

b)\(36:\sqrt{2.3^2.18}-\sqrt{169}\)

= 36 : 18 - 14

= 2 - 14

= - 12

c)\(\sqrt{\sqrt{81}}\) = \(\sqrt{9}\) = 3

d)\(\sqrt{3^2+4^2}\)

= \(\sqrt{9+16}\)

= \(\sqrt{25}\)

= 5

26 tháng 10 2018

Làm sai rồi

31 tháng 3 2017

a) \(\sqrt{16}\cdot\sqrt{25}+\sqrt{196}:\sqrt{49}\)

\(=\sqrt{16\cdot25}+\sqrt{196:49}\)

\(=20+2=22\)

b) \(36:\sqrt{2\cdot3^2\cdot18}-\sqrt{169}\)

\(=36:\sqrt{324}-\sqrt{169}\)

\(=36:18-13=2-13=-11\)

c) \(\sqrt{\sqrt{81}}\)

\(=\sqrt{9}=3\)

d) \(\sqrt{3^2+4^2}\)

\(=\sqrt{9+16}=\sqrt{25}=5\)

7 tháng 6 2017

a) \(\sqrt{16}.\sqrt{25}+\sqrt{196}\div\sqrt{49}\)

\(=4.5+14:7\)

\(=20+2=22\)

b) \(36:\sqrt{2.3^2.18}-\sqrt{169}\)

\(=36:18-13=-11\)

c) \(\sqrt{\sqrt{81}}=\sqrt{9}=3\)

d) \(\sqrt{3^2+4^2}=\sqrt{25}=5\)

21 tháng 12 2017

1. Rút gọn biểu thức:

a) \(\sqrt{\dfrac{81}{25}.\dfrac{49}{16}.\dfrac{9}{196}}=\sqrt{\dfrac{81}{25}}.\sqrt{\dfrac{49}{16}}.\sqrt{\dfrac{9}{4.49}}=\dfrac{9}{5}.\dfrac{7}{4}.\dfrac{3}{2.7}=\dfrac{9.3}{5.4.2}=\dfrac{27}{40}\)

b) \(\sqrt{72}-5\sqrt{2}-\sqrt{49.3}+\sqrt{48}+\sqrt{12}=\)

\(=\sqrt{9.4.2}-5\sqrt{2}-\sqrt{49.3}+\sqrt{16.3}+\sqrt{4.3}\)

\(=3.2\sqrt{2}-5\sqrt{2}-7\sqrt{3}+4\sqrt{3}+2\sqrt{3}\)

\(=6\sqrt{2}-5\sqrt{2}-7\sqrt{3}+4\sqrt{3}+2\sqrt{3}\)

\(=\sqrt{2}-\sqrt{3}\)

c) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}=\) \(=\left|2-\sqrt{3}\right|+\left|2+\sqrt{3}\right|=2-\sqrt{3}+2+\sqrt{3}=4\)

d) \(\sqrt{5}+\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}=\)

\(=\sqrt{5}+\sqrt{4.5}-\sqrt{9.5}+3\sqrt{9.2}+\sqrt{9.4.2}\)

\(=\sqrt{5}+2\sqrt{5}-3\sqrt{5}+3.3\sqrt{2}+3.2\sqrt{2}\)

\(=\sqrt{5}+2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)

\(=15\sqrt{2}\)

22 tháng 12 2017

tks @duy bùi ngọc hà nha

Bài 1:Giải pt(không dùng máy tính)a)\(x=\sqrt[3]{4x^2-x-6}\)b)\(\sqrt{x}^3=\left(\sqrt{x}-4\right)^2\)c)\(x^4-x^2+1=-x^2+4x-2\)Bài 2:Cho f(x)=(a-89)(a-90)x+1 Biết a=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2019}}\)Cho \(m=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2020\sqrt{2019}+2019\sqrt{2020}}\)      \(n=\sqrt[3]{\sqrt{10}-\sqrt{3}}\)So sánh \(f\left(m\right)\)và \(f\left(n\right)\)Bài 3.Cho...
Đọc tiếp

Bài 1:Giải pt(không dùng máy tính)

a)\(x=\sqrt[3]{4x^2-x-6}\)

b)\(\sqrt{x}^3=\left(\sqrt{x}-4\right)^2\)

c)\(x^4-x^2+1=-x^2+4x-2\)

Bài 2:Cho f(x)=(a-89)(a-90)x+1 

Biết a=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2019}}\)

Cho \(m=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2020\sqrt{2019}+2019\sqrt{2020}}\)

      \(n=\sqrt[3]{\sqrt{10}-\sqrt{3}}\)

So sánh \(f\left(m\right)\)và \(f\left(n\right)\)

Bài 3.Cho (d):\(y=\left(m^2+1\right)x-3m^2+1\)(m là tham số)

Lấy N(-1;7).Kẻ NH vuông góc với (d) ở H sao cho NH=5 cm.

a)Tìm m

b)Gọi d1;d2;...;d2019 đồng quy với NH tại 1 điểm thuộc đoạn NH.Gọi h1;h2;...;h2019 lần lượt là khoảng cách từ O đến d1;d2;...;d2019.

Tìm max của h1+h2+...+h2019.

Bài 4:Cho tam giác ABC nhọn.AH vuông BC ở H.Phân giác BM của góc ABC (M thuộc AC).Kẻ CE vuông AB ở E.CE cắt BM ở l.AH cắt BM ở F.CMR:BM.BI.BA=BC.BH.BK

Bài 5:Cho tam giác ABC nhọn.CMR:tanA+tanB+tanC=tanA.tanB.tanC.

Bài 6:Cho 2005 điểm thuộc cùng 1 mặt phẳng(không có điểm nào trùng nhau) sao cho trong 3 điểm bất kì ta luôn tìm được 2 điểm có khoảng cách nhỏ hơn 25 cm.CMR tồn tại 1 đường tròn bán kính 25 cm chứa ít nhất 1003 điểm trên

 

0
21 tháng 8 2017

a) \(\sqrt{16}+\sqrt{1}-3\sqrt{9}=4+1-3.3=-4\)

b) \(\sqrt{\dfrac{4}{9}}-\sqrt{25}+\sqrt{100}=\dfrac{2}{3}-5+10=\dfrac{17}{3}\)

c) \(2\sqrt{169}+3\sqrt{196}-2\sqrt{289}\)

= \(2.13+3.14-2.17=34\)

12 tháng 7 2017

a. Ta thấy \(\left(a\sqrt{5}\right)^2=\left(a\sqrt{3}\right)^2+\left(a\sqrt{2}\right)^2\Rightarrow AB^2=BC^2+AC^2\)

\(\Rightarrow\Delta ABC\)vuông tại C

b. \(\sin B=\frac{AC}{AB}=\frac{\sqrt{2}}{\sqrt{5}}=\frac{\sqrt{10}}{5};\cos B=\frac{CB}{AB}=\frac{\sqrt{3}}{\sqrt{5}}=\frac{\sqrt{15}}{5}\)

\(\tan B=\frac{AC}{AB}=\frac{\sqrt{6}}{3};\cot B=\frac{\sqrt{6}}{2}\)

\(\sin A=\cos B=\frac{\sqrt{15}}{5};\cos A=\sin B=\frac{\sqrt{10}}{5}\)

\(\tan A=\cot B=\frac{\sqrt{6}}{2};\cot A=\tan B=\frac{\sqrt{6}}{3}\) 

12 tháng 7 2017

Thanks bạn nhìu