Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\frac{15ab+5b^2}{9a^2-b^2}=\frac{5b\left(3a+b\right)}{\left(3a\right)^2-b^2}=\frac{5b\left(3a+b\right)}{\left(3a-b\right)\left(3a+b\right)}=\frac{5b}{3a-b}\)
\(\frac{3x^2-3y^2}{9x+9y}=\frac{3\left(x^2-y^2\right)}{9\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{3\left(x+y\right)}=\frac{x-y}{3}\)
\(\frac{m^2-4m+4}{2x-4}=\frac{\left(x-2\right)^2}{2\left(x-2\right)}=\frac{x-2}{2}\)
5.
\(4x^5y^2+8x^4y^3+4x^3y^4=4x^3y^2(x^2+2xy+y^2)\)
\(=4x^3y^2(x+y)^2\)
9.
\(4x^5y^2+16x^4y^2-6x^3y^2=2x^3y^2(2x^2+4x-3)\)
13.
\(-3x^4y+6x^3y-3x^2y=-3x^2y(x^2-2x+1)=-3x^2y(x-1)^2\)
17.
\(8x^3-8x^2y+2xy^2=2x(4x^2-4xy+y^2)\)
\(=2x[(2x)^2-2.2x.y+y^2]=2x(2x-y)^2\)
21.
\((a^2+4)^2-16a^2b^2=(a^2+4)^2-(4ab)^2\)
\(=(a^2+4-4ab)(a^2+4+4ab)\)
25.
\(100a^2-(a^2+25)^2=(10a)^2-(a^2+25)^2\)
\(=(10a-a^2-25)(10a+a^2+25)\)
\(=-(a^2-10a+25)(a^2+10a+25)=-(a-5)^2(a+5)^2\)
29.
\(25a^2b^2-4x^2+4x-1=25a^2b^2-(4x^2-4x+1)\)
\(=(5ab)^2-(2x-1)^2=(5ab-2x+1)(5ab+2x-1)\)
e) = \(\dfrac{3}{2\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\)
= \(\dfrac{3x}{2x\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\) = \(\dfrac{3x-x+6}{2x\left(x+3\right)}\)
= \(\dfrac{2x-6}{2x\left(x+3\right)}\)
= \(\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\)
c) = \(\dfrac{2\left(a^3-b^3\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)\left(a^2-2ab+b^2\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)}{1}\) . \(\dfrac{2}{1}\) = -4 (a+b)
bài 1 : điền vào chỗ chấm để đk khẳng định đúng :
a) (.x..+2y...)2=x2+..4y.+4y2
b) (.a..-.3b..)2=a2-6ab+.9b2..
c) (.m..+.\(\frac{1}{2}\)..)2=.m2..+m+1/4
d) 25a2-..\(\frac{1}{4}b\).=(.5a..+1/2b)(..5a..-1/2b)
e)(.2x...+.1..)^2 = 4x^2 +.4x..+1
g)(2-x)(.4..+.2x..+.x2..)=8-x^3
h) 16a^2 - ..9. = (..4a.+3)(..4a.-3)
f)25 - ..30y.+9y^2=(..5.+...3y.)^2
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
Câu 1:
a,4a2b( 2ab2 - 3a2b2)
= 8a3b3 - 12a4b3
b, ( x - 4 )( x2 + 2x - 5)
= x( x2 + 2x - 5) - 4(x2 + 2x - 5)
= x3 + 2x2 - 5x - 4x2 - 8x + 20
= x3 - 2x2 - 13x + 20
Câu 2 :
a, 4xy ( 2xy2 - 3x2y)
= 8x2y3 - 12x3y2
b,( x + 2 )( 2x2 - 3x + 4)
= x( 2x2 - 3x + 4) + 2( 2x2 - 3x + 4)
= 2x3 - 3x2 + 4x + 4x2 - 6x + 8
= 2x3 + x2 - 2x + 8
Câu 3 :
a, ( x + y )2 = x2 + 2.x.y + y2 = x2 + 2xy + y2
b, ( 2m - n )3 = ( 2m)3 - 3.( 2m )2.n + 3.2m.n2 - n3
= 8m3 - 12m2n + 6mn2 - n3
Chúc bạn học tốt
Vì ko có thời gian nên mình chỉ có thể giúp bạn câu 3 thôi nhé mong bạn thông cảm cho minh nha.
a, (x+y)^2=x^2+2*x*y+y^2=x^2+2xy+y^2
b, (2m-n)^3=2m^3-3*2m^2*n+3*2m*n^3-n^3=2m^3-6m^2n+6mn^3-n^3.
Mong bn thông cảm cho mình nha. Chúc bn luôn may mắn.