Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) \(\sqrt{4\left(a-3\right)^2}+2\sqrt{\left(a^2+4a+4\right)}\)
= \(2\left|a-3\right|+2\left|a+2\right|\)
\(=2.\left(-a+3\right)+2\left(-a-2\right)\)
b) có sai đề ko ?
c) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\sqrt{\dfrac{x^2\left(x+2\right)}{x+2}}=4x-2\sqrt{4}+x=3x-2\sqrt{4}\)
1/Em không chắc nha, nhất là câu c ý, nó sai sai hay là em làm sai nhỉ?
a) ĐK \(x\ge0\). Bình phương hai vế:
\(x+5=x+2\sqrt{x}+1\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\) (TMĐK)
b)ĐK \(0\le x\le1\) . Bình phương hai vế:
\(2\sqrt{x\left(1-x\right)}=0\Leftrightarrow x\left(1-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\left(TMĐK\right)\)
c) ĐK: \(\left\{{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\Leftrightarrow5\le x\le3\) (vô lí))
Vậy không tồn tại x thỏa mãn đề bài.
cau c í mk thấy bn chép sai đề nên mk sửa lại đề rồi bạn xem lại đề rồi so với bài làm của mk nha có j ko hiểu thì ib mk nha
\(a)VT = \dfrac{{{{\left( {\sqrt a + 1} \right)}^2} - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{a + \sqrt a }}{{\sqrt a }}\\ = \dfrac{{a + 2\sqrt a + 1 - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{\sqrt a \left( {\sqrt a + 1} \right)}}{{\sqrt a }}\\ = \dfrac{{a - 2\sqrt a + 1}}{{\left( {\sqrt a - 1} \right)}} + \sqrt a + 1\\ = \dfrac{{{{\left( {\sqrt a - 1} \right)}^2}}}{{\sqrt a - 1}} + \sqrt a + 1\\ = \sqrt a - 1 + \sqrt a + 1\\ = 2\sqrt a = VP (đpcm) \)
\(b)VT = \dfrac{{x\sqrt x + y\sqrt y }}{{\sqrt x + \sqrt y }} - {\left( {\sqrt x - \sqrt y } \right)^2}\\ = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\left( {x - \sqrt {xy} + y} \right)}}{{\sqrt x + \sqrt y }} - \left( {x - 2\sqrt {xy} + y} \right)\\ = x - \sqrt {xy} + y - x + 2\sqrt {xy} - y\\ = \sqrt {xy} (đpcm)\\ c)VT = \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}:\dfrac{{a - b}}{{\sqrt a + \sqrt b }}\\ = \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}.\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \sqrt a - \sqrt b .\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{a - b}}\\ = \dfrac{{a - b}}{{a - b}} = 1 (đpcm)\\ d)VT = \left[ {\dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^2} + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}} \right]:\sqrt b \\ = \dfrac{{a - 2\sqrt {ab} + b + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}:\sqrt b \\ = \dfrac{{{{\left( {\sqrt a + \sqrt b } \right)}^2}}}{{\sqrt a + \sqrt b }} - \left( {\sqrt a - \sqrt b } \right):\sqrt b \\ = \sqrt a + \sqrt b - \sqrt a + \sqrt b :\sqrt b \\ = \dfrac{{2\sqrt b }}{{\sqrt b }} = 2 (đpcm) \)
Câu c đề sai (đã sửa)
1)
a)\(\left(\sqrt{x}-\sqrt{y}\right).\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}\right)^2-\left(\sqrt{y}\right)^2=x-y\)
b)\(\left(\sqrt{x}-3\right).\left(\sqrt{x}+2\right)=\left(\sqrt{x}\right)^2+2\sqrt{x}-3\sqrt{x}-6=x-\sqrt{x}-6\)
c)\(\sqrt{\left(2-\sqrt{5}\right)^2.\left(2+\sqrt{5}\right)^2}=\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)=4-\left(\sqrt{5}\right)^2\)
=\(4-5=1\)
d)\(\sqrt{\left(-5\right)^2.3^2}=\left(5\right).3=15\)
e)\(\sqrt{\frac{5}{27}.\frac{8}{20}}=\sqrt{\frac{2}{27}}\)
ĐÂy này nhớ **** vài câu nha
a, \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}=\left(\sqrt{7}+\sqrt{3}\right)\sqrt{2}\sqrt{5-\sqrt{21}}\)
\(=\left(\sqrt{7}+\sqrt{3}\right)\sqrt{10-2\sqrt{21}}=\left(\sqrt{7}+\sqrt{3}\right)\sqrt{7-2.\sqrt{3}.\sqrt{7}+3}\)
\(=\left(\sqrt{7}+\sqrt{3}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)=7-3=4\)
Bài 1:
a)Ta có:\(\sqrt{7-2\sqrt{10}}-\sqrt{6-2\sqrt{5}}=\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}-\sqrt{5-2\sqrt{5}.1+1}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{2}-\sqrt{5}+1=-\sqrt{2}+1\)
b)Ta có:\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=\sqrt{4+\sqrt{15}}.\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}.\left(\sqrt{10}-\sqrt{6}\right)=\sqrt{4+\sqrt{15}}.1.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)