\(Z^+\)

a, \(\text{x-2xy+y-3}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2019

a,\(x^3+2x^2y+xy^2-9x\)

=x(\(x^2+2xy+y^2\)-9)

=x[(\(x^2+2xy+y^2\))-9]

=x[\(\left(x+y\right)^2\)-9]

b,2x-2y-\(x^2+2xy-y^2\)

=(2x-2y)-(\(x^2-2xy+y^2\))

=2(x-y)-\(\left(x-y\right)^2\)

=(x-y)(2-x+y)

c,\(x^4-2x^2\)

=\(x^2\left(x^2-2\right)\)

d,\(x^2-4x+3\)

=\(x^2-4x+4-1\)

=\(\left(x^2-4x+2^2\right)\)-1

=\(\left(x-2\right)^2\)-1

=(x-2-1)(x-2+1)

thông cảm mk chỉ làm đc từng này thôibucminh

à..mà bạn xem lại ý e, cho mk đc k

23 tháng 8 2019

k) \(x^3-x+3x^2+3xt^2+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)

23 tháng 8 2019

h) \(a^3-a^2x-ay+xy\)

\(=a^2\left(a-x\right)-y\left(a-x\right)\)

\(=\left(a^2-y\right)\left(a-x\right)\)

28 tháng 12 2016

hay ak m hjhj

28 tháng 12 2016

rất cần có những bài như thế này để mn tham khảo, cám ơn bn

a, Chứng minh \(x^3+y^3+z^3=\left(x+y\right)^3-3xy.\left(x+y\right)+z^3\)

Biến đổi vế phải thì ta phải suy ra điều phải chứng minh 

b, Ta có: \(a+b+c=0\)thì 

\(a^3+b^3+c^3==\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab\left(-c\right)+c^3=3abc\)

  ( Vì \(a+b+c=0\)nên \(a+b=-c\))

Theo giả thuyết \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

Khi đó \(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)

\(=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)

\(=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)

\(=xyz.\frac{3}{xyz}=3\)

2 tháng 9 2018

\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)

\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)

\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)

31 tháng 8 2017

C=720