Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ck giúp mình với
Bài toán 3
a. 25 - y^2 = 8(x - 2009)
Ta có thể viết lại như sau:
y^2 - 8(x - 2009) + 25 = 0Đây là phương trình bậc hai với hệ số thực.
Ta có thể giải phương trình này như sau:
y = (8x - 1607 ± √(8x - 1607)^2 - 4 * 1 * 25) / 2 y = (4x - 803 ± √(4x - 803)^2 - 200) / 2 y = 2x - 401 ± √(2x - 401)^2 - 100Ta thấy rằng nghiệm của phương trình này là xấp xỉ 2009 và -2009.
Tuy nhiên, trong bài toán, x và y là số tự nhiên.
Vậy, nghiệm của phương trình này là x = 2009 và y = 0.
b. x^3 y = x y^3 + 1997
Ta có thể viết lại như sau:
x^3 y - x y^3 = 1997 x y (x^2 - y^2) = 1997 x y (x - y)(x + y) = 1997Ta có thể thấy rằng x và y phải có giá trị đối nhau.
Vậy, nghiệm của phương trình này là x = y = 1997/2 = 998,5.
Tuy nhiên, trong bài toán, x và y là số tự nhiên.
Vậy, nghiệm của phương trình này là x = y = 998.
c. x + y + 9 = xy - 7
Ta có thể viết lại như sau:
x - xy + y + 16 = 0Đây là phương trình bậc hai với hệ số thực.
Ta có thể giải phương trình này như sau:
x = (xy - 16 ± √(xy - 16)^2 - 4 * 1 * 16) / 2 x = (y - 4 ± √(y - 4)^2 - 64) / 2 x = y - 4 ± √(y - 4)^2 - 32Ta thấy rằng nghiệm của phương trình này là xấp xỉ 8 và -8.
Tuy nhiên, trong bài toán, x và y là số tự nhiên.
Vậy, nghiệm của phương trình này là x = 8 và y = 12.
Bài toán 4
Ta có thể chứng minh bằng quy nạp.
Cơ sở
Khi n = 2, ta có:
x1.x2 + x2.x3 = 0Vậy, x1.x2 + x2.x3 + ...+ xn.x1 = 0 khi n = 2.
Bước đệm
Giả sử rằng khi n = k, ta có:
x1.x2 + x2.x3 + ...+ xn.x1 = 0Bước kết luận
Xét số tự nhiên n = k + 1.
Ta có:
x1.x2 + x2.x3 + ...+ xn.x1 = x1.x2 + x2.x3 + ...+ xn.x1 + xn.x1Theo giả thuyết, ta có:
x1.x2 + x2.x3 + ...+ xn.x1 = 0Vậy, xn.x1 = -(x1.x2 + x2.x3 + ...+ xn.x1) = 0.
Như vậy, ta có:
x1.x2 + x2.x3 + ...+ xn.x1 shareGoogle itGọi vận tốc của ô tô trong nửa quãng đường đầu là v (km/h; a > 0)
vận tốc của ô tô trong nửa quãng đường còn lại là: v + 20%v = \frac{6}{5}v56v
Đổi 10' = \frac{1}{6}h61h
Gọi thời gian ô tô đi trong nửa quãng đường đầu là t (h; t > 0)
thời gian ô tô đi trong nửa quãng đường còn lại là: t - \frac{1}{6}61
Vì cùng đi hết nửa quãng đường AB nên thời gian và vận tốc là 2 đại lượng tỉ lệ nghịch
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\frac{t}{6}=\frac{t-\frac{1}{6}}{5}=\frac{t-\left(t-\frac{1}{6}\right)}{6-5}=\frac{1}{6}6t=5t−61=6−5t−(t−61)=61
\Rightarrow\begin{cases}t=\frac{1}{6}.6=1\\t-\frac{1}{6}=\frac{1}{6}.5=\frac{5}{6}\end{cases}⇒{t=61.6=1t−61=61.5=65
Vậy thời gian ô tô đi từ A -> B là:
t+\left(t-\frac{1}{6}\right)=1+\frac{5}{6}=\frac{11}{6}\left(h\right)t+(t−61)=1+65=611(h)
Giải:
Vận tốc sau khi tăng bằng: 100% + 20% = 120% (vận tốc lúc đầu)
120% = \(\dfrac{6}{5}\)
Tỉ số vận tốc lúc sau so với vận tốc lúc đầu là: \(\dfrac{6}{5}\)
Xét trên nửa quãng đường còn lại ta có:
Cùng một quãng đường vận tốc tỉ lệ nghịch với thời gian nên tỉ số gian lúc sau và thời gian lúc đầu là:
1 : \(\dfrac{6}{5}\) = \(\dfrac{5}{6}\)
10 phút = \(\dfrac{1}{6}\) (giờ)
Gọi thời gian lúc sau khi tăng tốc để đi hết nửa quãng đường còn lại là t thì thời gian đi hết nửa quãng đường còn lại theo dự định là: \(\dfrac{5}{6}\).t
Theo bài ra ta có: t - \(\dfrac{5}{6}\)t = \(\dfrac{1}{6}\)
\(\dfrac{1}{6}\)t = \(\dfrac{1}{6}\)
t = 1
Vậy thời gian ô tô đi nửa quãng đường còn lại với vận tốc dự định là 1 giờ
Thời gian ô tô đi nửa quãng đường sau với vận tốc sau khi tăng là:
1 giờ - 10 phút = 50 phút
Thời gian ô tô đi từ A đến B là:
1 giờ + 50 phút = 1giờ 50 phút.
Kết luận ô tô đi từ A đến B hết 1 giờ 50 phút.
thời gian dự định ô tô đã đu từ A đến B là x(giờ)
vận tốc dự định là: AB / x (km/h)
Sau khi đi được 1/3 quãng đường (AB/3) , thời gian đi quãng đường này là:
(AB/3) / (AB/x) = x/3 (h)
Vận tốc oto sau đó là: AB/x + 25%*AB/x = 5AB/4x (km/h)
thời gian để đi 2/3 quãng đg còn lại (2AB/3) là: (2AB/3) / (5AB/4x) = 8x/15 (h)
otô đến B sớm hơn 10 phút = 1/6 h nên ta có:
x - (x/3 + 8x/15) = 1/6
<=> x - 13x/15 = 1/6
<=> 2x/15 = 1/6
<=> x = 1.25 h = 1h15' = 75'
=> thời gian thực tế là: 75 - 10 = 65 phút
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
10:
Vì n là số lẻ nên n=2k-1
Số số hạng là (2k-1-1):2+1=k(số)
Tổng là (2k-1+1)*k/2=2k*k/2=k^2 là số chính phương
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc {1;5;13;65}
=>\(n\in\left\{0;2;-2;2\sqrt{3};-2\sqrt{3};8;-8\right\}\)
Có phải phân số bạn đinh viết trong câu 1 như sau không?
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-z}=x+y+z\)
Giải:
Vận tốc sau khi tăng bằng: 100% + 20% = 120% (vận tốc lúc đầu)
120% = \(\dfrac{6}{5}\)
Tỉ số vận tốc lúc sau so với vận tốc lúc đầu là: \(\dfrac{6}{5}\)
Xét trên nửa quãng đường còn lại ta có:
Cùng một quãng đường vận tốc tỉ lệ nghịch với thời gian nên tỉ số gian lúc sau và thời gian lúc đầu là:
1 : \(\dfrac{6}{5}\) = \(\dfrac{5}{6}\)
10 phút = \(\dfrac{1}{6}\) (giờ)
Gọi thời gian lúc sau khi tăng tốc để đi hết nửa quãng đường còn lại là t thì thời gian đi hết nửa quãng đường còn lại theo dự định là: \(\dfrac{5}{6}\).t
Theo bài ra ta có: t - \(\dfrac{5}{6}\)t = \(\dfrac{1}{6}\)
\(\dfrac{1}{6}\)t = \(\dfrac{1}{6}\)
t = 1
Vậy thời gian ô tô đi nửa quãng đường còn lại với vận tốc dự định là 1 giờ
Thời gian ô tô đi nửa quãng đường sau với vận tốc sau khi tăng là:
1 giờ - 10 phút = 50 phút
Thời gian ô tô đi từ A đến B là:
1 giờ + 50 phút = 1giờ 50 phút.
Kết luận ô tô đi từ A đến B hết 1 giờ 50 phút.