\(x+1-\left|x-\frac{2}{3}\right|\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)

Dấu "=" xảy ra khi x=y=1

Máy mình bị lỗi nên ko nhìn được các bài tiếp theo

Chúc bạn học tốt :)

18 tháng 9 2018

Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2    

Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0

23 tháng 6 2017

C=|x+5| + |x+3|

Để C nhỏ nhất thì Ix+5I nhỏ nhất hoặc I x+3I nhỏ nhất => x+5 = 0 hoặc x+3 = 0

x= -5 hoặc x=-3

Thay x=-5 vào C=|x+5| + |x+3|, có: I -5+5I + I -5+3I = 0 +2 = 2

Thay x=-3 vào C=|x+5| + |x+3|. có: I -3+5I + I -3+3I = 2 + 0 = 2

Vậy GTNN của C=|x+5| + |x+3| là 2 tại x= -5 hoặc c=-3

25 tháng 5 2018

a) Ta có : 

\(A=\frac{3.\left(x-1\right)^2+12}{\left(x-1\right)^2+2}=\frac{3.\left(x-1\right)^2+3.2+6}{\left(x-1\right)^2+2}=\frac{3.\left[\left(x-1\right)^2+2\right]+6}{\left(x-1\right)^2+2}=3+\frac{6}{\left(x-1\right)^2+2}\)

Để A có giá trị nguyên \(\Leftrightarrow\)\(3+\frac{6}{\left(x-1\right)^2+2}\)\(\in\)\(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)^2+2}\)\(\in\)\(\Leftrightarrow\)( x - 1 )2 + 2 \(\in\)Ư ( 6 )

\(\Rightarrow\)( x - 1 )2 + 2 \(\in\){ 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 }

Lập bảng ta có :

(x-1)2+21-12-23-36-6
xloạiloại0loại\(\orbr{\begin{cases}2\\0\end{cases}}\)loại\(\orbr{\begin{cases}3\\-1\end{cases}}\)loại

Vậy x = { 0 ; 2 ; 3 ; -1 }

b) để A có giá trị lớn nhất \(\Leftrightarrow\)\(3+\frac{6}{\left(x-1\right)^2+2}\)có GTLN \(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)^2+2}\)có GTLN \(\Leftrightarrow\)( x - 1 )2 +2 có GTNN

Mà ( x - 1 )2 \(\ge\)\(\Rightarrow\)( x - 1 )2 + 2 \(\ge\)\(\Rightarrow\)GTNN của ( x - 1 )2 + 2 là 2 \(\Leftrightarrow\)x = 1

Vậy A có GTLN là : \(\frac{3.\left(1-1\right)^2+12}{\left(1-1\right)^2+2}=\frac{12}{2}=6\)\(\Leftrightarrow\)x = 1

9 tháng 7 2018

a, \(A=\frac{3\left(x-1\right)^2+12}{\left(x-1\right)^2+2}=\frac{3\left[\left(x-1\right)^2+2\right]+6}{\left(x-1\right)^2+2}=3+\frac{6}{\left(x-1\right)^2+2}\)

Để \(A\in Z\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Mà \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\)

\(\Rightarrow\left(x-1\right)^2+2\in\left\{2;3;6\right\}\)

Ta có bảng:

(x - 1)2 + 2236
x123

Vậy...

b, Theo câu a ta có: \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{1}{\left(x-1\right)^2+2}\le\frac{1}{2}\Rightarrow\frac{6}{\left(x-1\right)^2+2}\le\frac{6}{2}=3\)

Dấu "=" xảy ra  khi x - 1 = 0 <=> x = 1

Vậy GTLN của A = 3 khi x = 1

10 tháng 7 2018

sr câu b mình lm thiếu

Theo câu a ....

=> \(A\le3+3=6\)

Dấu "=" xảy ra khi x=1

Vậy GTLN của A = 6 khi x=1