Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(\left(3x-2\right)\left(2y-3\right)=1\)
\(\Rightarrow\)Trường hợp 1 :
\(\hept{\begin{cases}3x-2=1\\2y-3=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
\(\Rightarrow\)Trường hợp 2 :
\(\hept{\begin{cases}3x-2=-1\\2y-3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=1\end{cases}}}\)
Vậy ....
\(2n+9⋮3n+1\)
\(\Rightarrow3\left(2n+9\right)⋮3n+1\)
\(\Rightarrow2\left(3n+1\right)+25⋮3n+1\)
\(\Rightarrow25⋮3n+1\)
\(\Rightarrow3n+1\in\left\{5,25,1,-5,-25,-1\right\}\)
\(n\in\left\{8,0\right\}\)
\(5n+2⋮9-2n\)
\(\Rightarrow2\left(5n+2\right)⋮9-2n\)
\(\Rightarrow-5\left(9-2n\right)-41⋮9-2n\)
\(41⋮9-2n\)
\(\Rightarrow9-2n\in\left\{41,-41,1,-1\right\}\)
\(\Rightarrow n\in\left\{-16,25,4,-5\right\}\)
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)
b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)
\(=\frac{5}{4}.\frac{4n}{12n+9}\)
\(=\frac{5n}{12n+9}\)
( sai đề )
a) Vì 3\(⋮\)n
=> n\(\in\)Ư(3)={ 1; 3 }
Vậy, n=1 hoặc n=3