Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)=5.\left(x-y\right)^2\)
b, \(x^2-4x+4-y^2=\left(x^2-4x+4\right)-y^2=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
c, \(3x^2-2x-5=3x^2-5x+3x-5=x\left(3x-5\right)+3x-5\)
\(=\left(3x-5\right)\left(x+1\right)\)
\(3x^5-x^2+2x^3-6x^4+2=3x^5-6x^4+2x^3-x^2+2 \)
Có : \(\frac{3x^5-6x^4+2x^3-x^2+2}{3x^2+2}=\frac{x^3.\left(3x^2+2\right)-6x^4-x^2+2}{3x^2+2}=\frac{...-3x^2.2x^2-4x^2+3x^2+2}{3x^2+2}\)
\(=\frac{...-2x^2.\left(3x^2+2\right)+\left(3x^2+2\right)}{3x^2+2}=\frac{\left(x^3-2x^2+1\right).\left(3x^2+2\right)}{3x^2+2}=x^3-2x^2+1\)
\(\dfrac{x^5-3x^4+5x^3-x^2+3x-5}{x^2-3x+5}\)
\(=\dfrac{x^3\left(x^2-3x+5\right)-\left(x^2-3x+5\right)}{x^2-3x+5}\)
\(=x^3-1\)