Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\)
Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-1}{\sqrt{x}+1}\)
1. ĐK \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
a. Ta có \(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right).\left(\frac{1}{\sqrt{x}+2}+\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
b. Với \(x=4+2\sqrt{3}\Rightarrow R=\frac{\sqrt{4+2\sqrt{3}}+2}{\sqrt{4+2\sqrt{3}}\left(\sqrt{4+2\sqrt{3}}-2\right)}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}-2\right)}\)
\(=\frac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+3}{3-1}=\frac{\sqrt{3}+3}{2}\)
c. Để \(R>0\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)
Vậy \(x>4\)thì \(R>0\)
2. Ta có \(A=6+2\sqrt{2}=6+\sqrt{8};B=9=6+3=6+\sqrt{9}\)
Vì \(\sqrt{8}< \sqrt{9}\Rightarrow A< B\)
3. a. \(VT=\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)=a-b=VP\left(đpcm\right)\)
b. Ta có \(VT=\left(2+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right).\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)
\(=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)=4-a=VP\left(đpcm\right)\)
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)
Bài 1:
a, \(4\sqrt{3+2\sqrt{2}}-\sqrt{57+40\sqrt{2}}\)
\(=4\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(4\sqrt{2}+5\right)^2}\)
\(=4\left(\sqrt{2}+1\right)-4\sqrt{2}-5\)
\(=4\sqrt{2}+4-4\sqrt{2}-5=-1\)
b, \(B=\sqrt{1100}-7\sqrt{44}+2\sqrt{176}-\sqrt{1331}\)
\(=10\sqrt{11}-14\sqrt{11}+8\sqrt{11}-11\sqrt{11}=-7\sqrt{11}\)
c, \(C=\sqrt{\left(1-\sqrt{2002}\right)^2}.\sqrt{2003+2\sqrt{2002}}\)
\(=\left(1-\sqrt{2002}\right).\sqrt{\left(\sqrt{2002}+1\right)^2}\)
\(=\left(1-\sqrt{2002}\right).\left(\sqrt{2002}+1\right)=-2001\)
Câu d bạn kiểm tra lại đề bài nhé.
Bài 2:
\(A=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{2}+2}+\frac{\sqrt{x}}{1-x}\)
a, ĐK: \(x\ge0,x\ne1\)
b, ĐK: \(x\ge0,x\ne1\)
\(A=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{2}+2}+\frac{\sqrt{x}}{1-x}\)
\(=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{2}+2}-\frac{\sqrt{x}}{x-1}\)
\(=\frac{1}{2\left(\sqrt{x}-1\right)}-\frac{1}{2\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{x-1}\)
\(=\frac{2\sqrt{x}+2-2\sqrt{x}+2}{4\left(x-1\right)}-\frac{\sqrt{x}}{x-1}\)
\(=\frac{4-4\sqrt{x}}{4\left(x-1\right)}=\frac{4\left(1-\sqrt{x}\right)}{4\left(1-x\right)}=\frac{1-\sqrt{x}}{1-x}\)
Thay \(x=3\left(TM\right)\)vào A ta có: \(A=\frac{1-\sqrt{3}}{3-1}=\frac{1-\sqrt{3}}{2}\)
Vậy với \(x=3\)thì \(A=\frac{1-\sqrt{3}}{2}\)
c, \(\left|A\right|=\frac{1}{2}\Leftrightarrow\orbr{\begin{cases}A=\frac{1}{2}\\A=-\frac{1}{2}\end{cases}}\)
TH1: \(A=\frac{1}{2}\)\(\Leftrightarrow\frac{1-\sqrt{x}}{x-1}=\frac{1}{2}\Leftrightarrow2-2\sqrt{x}=x-1\)\(\Leftrightarrow x-1-2+2\sqrt{x}=0\)\(\Leftrightarrow x+2\sqrt{x}-3=0\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\\sqrt{x}=-3\left(L\right)\end{cases}}}\)
TH2: \(A=-\frac{1}{2}\Leftrightarrow\frac{1-\sqrt{x}}{x-1}=-\frac{1}{2}\)\(\Leftrightarrow2-2\sqrt{x}=1-x\Leftrightarrow-x+1-2+2\sqrt{x}=0\)\(\Leftrightarrow-x-1+2\sqrt{x}=0\Leftrightarrow x-2\sqrt{x}+1=0\)\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=0\Leftrightarrow\sqrt{x}=-1\left(L\right)\)
Vậy với \(x=1\)thì \(\left|A\right|=\frac{1}{2}\)
Cám ơn bạn nhiều nha!!!