Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,4x^2-12x+y=9\left(x-2\right)\)
y ở đâu ở đây ???
\(b,x^3+3x^2+3x+1=0\)
\(\Rightarrow\left(x+1\right)^3=0\Rightarrow x=-1\)
1) b) x^3 + 3x^2 + 3x + 1 = 0
<=> (x + 3)^3 = 0
<=> x = -1
=> x = -1
a) x2 - 5x - y2 -5y
= ( x2 - y2 ) + ( -5x - 5y)
= ( x - y ) ( x + y) - 5( x + y )
= ( x + y ) ( x - y -5)
b) x3 + 2x2 - 4x - 8
= x2 ( x + 2 ) - 4 ( x + 2 )
= ( x +2 ) ( x2 -4 )
= ( x+2)2 ( x-2)
Bai 2 :
a, \(A=\left(x+3\right)^2+\left(x-2\right)^2-2\left(x+3\right)\left(x-2\right)\)
\(=x^2+6x+9+x^2-4x+4-2\left(x^2-2x+3x-6\right)\)
\(=2x^2+2x+13-2x^2-2x+12=25\)
b, \(B=\left(x-2\right)^2-x\left(x-1\right)\left(x-3\right)+3x^2-9x+8\)
\(=x^2-4x+4-x\left(x^2-3x-x+3\right)+3x^2-9x+8\)
\(=4x^2-13x+12-x^3+4x^2-3x=-16x+12-x^3\)
a) \(\left(m+n\right)^2-\left(m-n\right)^2+\left(m+n\right)\left(m-n\right)\)
\(=\left(m+n+m-n\right)\left(m+n-m+n\right)+m^2-n^2\)
\(=m^2-n^2+4mn\)
b) \(\left(a+b\right)^3+\left(a-b\right)^3-2a^3\)
\(=\left(a+b-a+b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]-2a^3\)
\(=2b\left[a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right]-2a^3\)
\(=2b\left(a^2+3b^2\right)-2a^3\)
\(=2a^2b+6b^3-2a^3.\)
Tương tự áp dụng các HĐT.
a) \(\left(m+n\right)^2-\left(m-n\right)^2=\left[\left(m+n\right)-\left(m-n\right)\right]\left[\left(m+n\right)+\left(m-n\right)\right]=\left(2n\right)\left(2m\right)=4mn\)\(\left(m+n\right)\left(m-n\right)=m^2-n^2\)
A=\(4mn+m^2-n^2\) tối giản rồi
b)
\(\left(a+b\right)^3+\left(a-b\right)^3=\left[\left(a+b\right)+\left(a-b\right)\right]^3-3\left(a+b\right)\left(a-b\right)\left[\left(a+b\right)+\left(a-b\right)\right]=8a^3-3.2a.\left(a^2-b^2\right)\)B=\(8a^3-3.2a.\left(a^2-b^2\right)-2a^3=6a\left[a^2-\left(a^2-b^2\right)\right]=6ab^2\)
1) \(\left(y+3\right)^3-\left(y-1\right)^3\)
=(y+3-y+1)\(\left[\left(y+3\right)^2+\left(y+3\right)\left(y-1\right)+\left(y-1\right)^2\right]\)
=4.(\(y^2+6y+9\)+\(y^2-y+3y-3\)+\(y^2-2y+1\))
=4(\(3y^2+6y+7\))
=\(12y^2+24y+28\)
3.
\(a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)
\(=1.\left(a^2+b^2-ab\right)\) (1)
Lại có : \(a^2+b^2=\left(a+b\right)^2-2ab=1-2ab\) thay vào (1) có :
\(a^3+b^3=1.\left(1-2ab-ab\right)\)
\(=1-3ab\left(đpcm\right)\)
a) (a2 - 1)3- ( a4 + a2+1)(a2-1)
= (a2 - 1)3 - (a2 - 1)3 =0
b) (a4 - 3a2+ 9)(a2+3) - (3+a2)3
= (3+a2)3 - (3+a2)3
=0
Bài 1:
\(P=\left(5x-1\right)^2+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)
\(=\left(1-5x+5x+4\right)^2\)
\(=5^2=25\)
Bài 2:
a: \(\left(a+b+c\right)^3\)
\(=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)\cdot c^2+c^3\)
\(=a^3+3a^2b+3ab^2+b^3+3a^2c+6abc+3b^2c+3ac+3bc+c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
b: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2+2abcd+a^2d^2-2abcd+b^2c^2\)
\(=\left(a^2c^2+b^2c^2\right)+\left(b^2d^2+a^2d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)