K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

2/ 

a) \(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)

\(=\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+....+\frac{1}{17}-\frac{1}{21}\right)\)

\(=1-\frac{1}{21}=\frac{20}{21}\)

b) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{2017}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot..\cdot\frac{2016}{2017}\)

\(=\frac{1}{2017}\)

c) \(A=2000-5-5-5-..-5\)(có 200 số 5) 

\(A=2000-\left(5\cdot200\right)\)

\(A=2000-1000\)

\(A=1000\)

27 tháng 7 2015

\(\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\right)\times y=\frac{2}{3}\)

\(\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\times y=\frac{2}{3}\)

\(\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{11}\right)\times y=\frac{2}{3}\)

\(\frac{1}{2}\times\frac{10}{11}\times y=\frac{2}{3}\)

\(\frac{5}{11}\times y=\frac{2}{3}\) => \(y=\frac{2}{3}:\frac{5}{11}=\frac{2}{3}\times\frac{11}{5}=\frac{22}{15}\)

5 tháng 11 2016

A.  = 1/2-1/3+1/3-1/4+1/4-1/5...+1/101-1/102=1/2-1/102=25/51.

B.  =1/5-1/10+1/10-1/15+...+1/115-1/120=1/5-1/120=23/120.

C.  = 1/5-1/7+1/7-1/9+1/9-1/11+...+1/997-1/999=1/5-1/999=994/4995.

Minh kiem tra bang may tinh roi do.

5 tháng 11 2016

\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{101\times102}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}\)

\(=1-\frac{1}{102}\)

\(=\frac{101}{102}\)

31 tháng 7 2016

                              \(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)

                          \(x-10\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{53.55}\right)=\frac{3}{11}\)

\(x-10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)

                                                                                    \(x-10\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)

                                                                                                     \(x-10.\frac{4}{55}=\frac{3}{11}\)

                                                                                                          \(x-\frac{40}{55}=\frac{3}{11}\)

                                                                                                                        \(x=\frac{3}{11}+\frac{40}{55}\)

                                                                                                                        \(x=\frac{55}{55}=1\)

nha.

18 tháng 10 2016

Bài 1 :

\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(S=\frac{1}{1}-\frac{1}{2011}=\frac{2010}{2011}\)

Bài 2 :

\(S=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)

\(S=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)

Bài 3 :

\(3S=\frac{3}{4\times7}+\frac{3}{7\times11}+...+\frac{3}{19\times22}\)

\(3S=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{19}-\frac{1}{22}\)

\(3S=\frac{1}{4}-\frac{1}{22}\)

\(S=\frac{18}{88}\div3=\frac{6}{88}\)

9 tháng 6 2018

\(\Leftrightarrow10\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{x\times\left(x+1\right)}\right)=9\)

\(\Leftrightarrow\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=9\div10\)

\(\Leftrightarrow\frac{1}{1}-\frac{1}{x+1}=\frac{9}{10}\)

\(\Leftrightarrow\frac{1}{x+1}=1-\frac{9}{10}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{10}\)

\(\Rightarrow x+1=10\)

\(\Leftrightarrow x=9\)

Vậy x = 9 

16 tháng 6 2017

\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2009\cdot2010}\right)\cdot x=2009\)

\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\right)\cdot x=2009\)

\(\left(1-\frac{1}{2010}\right)\cdot x=2009\)

\(\frac{2009}{2010}\cdot x=2009\)

\(x=2009:\frac{2009}{2010}\)

\(x=2010\)

16 tháng 6 2017

\(\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+....+\frac{1}{2009}-\frac{1}{2010}\right).x=2009\)

\(\left(\frac{1}{1}-\frac{1}{2010}\right).x=2009\)

\(\frac{2009}{2010}.x=2009\)

            

\(x=2009:\frac{2009}{2010}\)

\(x=2010\)

19 tháng 6 2015

A= 7/5*7 + 7/7*9 + ... + 7/53*55

A= 7/2*( 2/5*+ 2/7*9  +  ... + 2/53*55 )

A= 7/2*( 7-5/5*7 + 9-7/7*9 + ... + 55-53/53*55 )

A= 7/2*( 1/5-1/7 + 1/7-1/9 + ... + 1/53-1/55 )

A= 7/2*( 1/5-1/55 )

A= 7/2*2/11

A= 7/11

A= 7/11 > 1/2

 Nên: A > 1/2

 

B= 1/3 + 1/15 + 1/35 + ... + 1/99

B= 1/1*3 + 1/3*5 + 1/5*7 + ... + 1/9*11

B= 2*( 2/1*3 + 2/3*5 + 1/5*7 + ... + 2/9*11 )

B= 2*( 3-1/1*3 + 5-3/3*5 + 7-5/5*7 + ... + 11-9/9*11 )

B= 2*( 1/1-1/3 + 1/3-1/5 + 1/5-1/7 + ... + 1/9-1/11 )

B= 2*( 1/1-1/11 )

B= 2*10/11

B= 20/11

B= 20/11 < 1/2

Nên: B < 1/2

 

20 tháng 6 2015

A= 7/5*7 + 7/7*9 + ... + 7/53*55

A= 7/2*( 2/5*7 + 2/7*9  +  ... + 2/53*55 )

A= 7/2*( 7-5/5*7 + 9-7/7*9 + ... + 55-53/53*55 )

A= 7/2*( 1/5-1/7 + 1/7-1/9 + ... + 1/53-1/55 )

A= 7/2*( 1/5-1/55 )

A= 7/2*2/11

A= 7/11

A= 7/11 > 1/2

 Nên: A > 1/2

 

B= 1/3 + 1/15 + 1/35 + ... + 1/99

B= 1/1*3 + 1/3*5 + 1/5*7 + ... + 1/9*11

B= 2*( 2/1*3 + 2/3*5 + 1/5*7 + ... + 2/9*11 )

B= 2*( 3-1/1*3 + 5-3/3*5 + 7-5/5*7 + ... + 11-9/9*11 )

B= 2*( 1/1-1/3 + 1/3-1/5 + 1/5-1/7 + ... + 1/9-1/11 )

B= 2*( 1/1-1/11 )

B= 2*10/11

B= 20/11

B= 20/11 < 1/2

Nên: B < 1/2

9 tháng 11 2014

\(\frac{1}{8}=12,5\%\)  ;  \(\frac{1}{16}=6,25\%\) ; \(\frac{1}{2}=50\%\) ; \(\frac{1}{4}=25\%\) 

Thay vào trên mà tính.

\(1+\left(\frac{3\left(1x2+2x4x2\right)}{3\left(5+5x3x25\right)}+1\right)-\left(1+\frac{18}{54}\right)-1\) = \(\frac{18}{380}-\frac{18}{54}\)