Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì x và y là 2 ĐLTLT nên ta có:
\(\frac{x}{y}=\frac{x_1}{y_1}=\frac{x_2}{y_2}\)
\(=\frac{x_1}{-\frac{3}{4}}=\frac{2}{\frac{1}{7}}=14\)
\(\Rightarrow x_1=14.-\frac{3}{4}=-\frac{21}{2}\)
b. Ta có: \(\frac{x_1}{y_1}=\frac{x_2}{y_2}\)
\(\Rightarrow\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{x_1}{-4}=\frac{y_1}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x_1}{-4}=\frac{y_1}{3}=\frac{y_1-x_1}{3-\left(-4\right)}=\frac{-2}{7}\)
\(\Rightarrow\hept{\begin{cases}x_1=-\frac{2}{7}.\left(-4\right)=\frac{8}{7}\\y_1=-\frac{2}{7}.3=-\frac{6}{7}\end{cases}}\)
a: Vì x,y là hai đại lượng tỉ lệ thuận nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow x_1=\dfrac{y_1}{y_2}\cdot x_2=\dfrac{-3}{5}:\dfrac{1}{9}\cdot3=-\dfrac{81}{5}\)
b: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\Leftrightarrow\dfrac{x_2}{5}=\dfrac{y_2}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_2}{5}=\dfrac{y_2}{-2}=\dfrac{y_2-x_2}{-2-5}=\dfrac{-7}{-7}=1\)
Do đó: \(x_2=5;y_2=-2\)
a/ x và y tỉ lệ thuận => x1 và x2 tỉ lệ thuận với y1 và y2
=> \(\frac{y_1}{x_1}=\frac{y_2}{x_2}\)
thay vào đc: \(\frac{-\frac{3}{4}}{x_1}=\frac{\frac{1}{7}}{2}\Leftrightarrow x_1=\frac{\frac{-3}{4}\cdot2}{\frac{1}{7}}=-\frac{21}{2}\)
vậy x1 = -21/2
b/ \(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Leftrightarrow\)\(\frac{y_1}{y_2}=\frac{x_1}{x_2}\)
áp dụng tính chất dãy tỉ số bằng nhau có:
\(\frac{y_1}{y_2}=\frac{x_1}{x_2}=\frac{y_1-x_1}{y_2-x_2}=\frac{-2}{3-\left(-4\right)}=\frac{-2}{7}\)
*) \(\frac{y_1}{y_2}=\frac{y_1}{3}=\frac{-2}{7}\Leftrightarrow y_1=\frac{-2\cdot3}{7}=-\frac{6}{7}\)
*) \(\frac{x_1}{x_2}=\frac{x_1}{-4}=\frac{-2}{7}\Leftrightarrow x_1=\frac{-2\cdot-4}{7}=\frac{8}{7}\)
Bài 1 : 1 tấn = 1000kg = 1000000g ; 25kg = 25000g
1000000g gấp 500g số lần là: 1000000 : 500 = 2000 lần
Trong 500g nước biển chứa số g muối là : 25000 : 2000 = 12,5 g