Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{4}x^2-mx-n=0\)
THeo đề, ta có:
\(\left\{{}\begin{matrix}m+n=2\\\left(-m\right)^2-4\cdot\left(-\dfrac{1}{4}\right)\cdot\left(-n\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\m^2-n=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\n^2-4n+4-n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n\in\left\{1;4\right\}\\m\in\left\{1;-2\right\}\end{matrix}\right.\)
Lời giải:
Để $(d)$ đi qua $A(-1;-2)$ thì: $-2=-m+n(1)$
Để $(d)$ và $(P)$ tiếp xúc nhau thì PT hoành độ giao điểm:
$\frac{1}{4}x^2-mx-n=0$ có nghiệm duy nhất
Điều này xảy ra khi:
$\Delta=m^2+n=0(2)$
Từ $(1);(2)\Rightarrow m=1$ hoặc $m=-2$
Nếu $m=1$ thì $n=-1$
Nếu $m=-2$ thì $n=-4$
Vậy............
Để d đi qua A
\(\Leftrightarrow m.1+n=0\Rightarrow n=-m\Rightarrow y=mx-m\)
Phương trình hoành độ giao điểm (P) và d:
\(\frac{1}{2}x^2=mx-m\Leftrightarrow x^2-2mx+2m=0\) (1)
Để d tiếp xúc (P) \(\Leftrightarrow\) (1) có nghiệm kép
\(\Leftrightarrow\Delta'=m^2-2m=0\Rightarrow\left[{}\begin{matrix}m=0\Rightarrow n=0\\m=2\Rightarrow n=-2\end{matrix}\right.\)
- Với \(m=n=0\Rightarrow x^2=0\Rightarrow x=0\Rightarrow y=0\)
Tọa độ tiếp điểm là \(\left(0;0\right)\)
- Với \(\left[{}\begin{matrix}m=2\\n=-2\end{matrix}\right.\) \(\Rightarrow x^2-4x+4=0\Rightarrow x=2\Rightarrow y=2\)
Tọa độ tiếp điểm là \(\left(2;2\right)\)
1.
Đồ thị hàm số:
2.
\(x=1\Rightarrow y=2\Rightarrow A\left(1;2\right)\)
\(x=2\Rightarrow y=8\Rightarrow B\left(2;8\right)\)
Phương trình đường thẳng AB:
\(6x-y-4=0\)
Vì \(\left(d\right)//\left(AB\right)\Rightarrow m=6\Rightarrow6x-y+n=0\left(AB\right)\)
Theo giả thiết \(\left(d\right)\) tiếp xúc với \(\left(P\right)\), phương trình hoành độ giao điểm:
\(6x+n=2x^2\)
\(\Leftrightarrow2x^2-6x-n=0\)
\(\Delta'=9+2n=0\Leftrightarrow n=-\dfrac{9}{2}\)
Đường thẳng y = mx + n đi qua điểm A ( -1 ; -2 ) nên
-2 = -m + n ,suy ra n = m-2
Phương trình đường thẳng có dạng y = mx + ( m -2 ) .Điều kiện để đường thẳng tiếp xúc với parabol là phương trình \(\frac{x^2}{4}=mx+\left(m-2\right)\) (1)
có nghiệm kép .Biến đổi (1) ta được : x2 -4.m.x - 4. ( m-2) =0 (2)
Điều kiện để ( 1 ) cũng có nghĩa là ( 2 ) có nghiệm kép là :
\(\Delta'=4m^2+4m-8=0\Leftrightarrow m^2+m-2=0\)
<=> ( m+2 ) . ( m-1 ) = 0 <=> m =-2 hoặc m = 1 .
Vậy các hệ số m , ncaanf tìm là m = -2 ; n = -4 và m =1 ; n=-1