K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2021
Bạn tham khảo nhé!

Bài tập Tất cả

Bài tập Tất cả

14 tháng 1 2020

để pt có 2 nghiệm phân biệt thì: đenta > 0 

mà ddeenta = m2 - 6m - 7 > 0  

giải ra ta đc: m<-1 hay m>7 (1)

áp dụng hệ thức vi-et đc x1 + x2 = m-1  và x1.x2= m+2 

kết 2 biểu thức trên dễ dàng làm đc x12 + x22 = m2-4m-3

bđt trên (=) (x12+x22)/x12.x22  - 1  > 0 

thay vào đc (-16m -7)/(m2+4m+4) > 0 =) m khác -2   và m<-7/16

kết hợp vs (1) =) m<-1 và m khác -2

NV
30 tháng 12 2020

\(\Delta=\left(m-1\right)^2-4\left(m+3\right)=m^2-6m-11>0\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=m+3\end{matrix}\right.\)

Ta có:

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m-1\right)^2-2\left(m+3\right)=m^2-4m-5\)

Biểu thức này ko tồn tại cả min lẫn max với điều kiện m từ (1)

NV
20 tháng 1 2022

\(\Delta=\left(3m+2\right)^2-12m=9m^2+4>0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3m-2\\x_1x_2=3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\x_1x_2+x_1+x_2+1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\\left(x_1+1\right)\left(x_2+1\right)=-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x_1+1=a\\x_2+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=-3m\\ab=-1\end{matrix}\right.\)

\(Q=a^4+b^4\ge2a^2b^2=2\)

Dấu "=" xảy ra khi \(a^2=b^2\Rightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=-b\end{matrix}\right.\)

\(\Rightarrow-3m=0\Rightarrow m=0\)

NV
28 tháng 4 2021

\(\Delta=\left(m-1\right)^2-4\left(m+2\right)>0\)

\(\Leftrightarrow m^2-6m-7>0\Rightarrow\left[{}\begin{matrix}m>7\\m< -1\end{matrix}\right.\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=m+2\end{matrix}\right.\)

Để \(x_1< x_2< 1\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)>0\\\dfrac{x_1+x_2}{2}< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1>0\\\dfrac{m-1}{2}< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4>0\\m< 3\end{matrix}\right.\)

Kết hợp với (1) ta được: \(m< -1\)

28 tháng 4 2021

da em cam on ^^