Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
A B C D M N
Qua C dựng đường thẳng song song với BD cắt đường thẳng AB tại điểm N.
Xét tứ giác DCNB có: CN // BD; BN // CD => Tứ giác DCNB là hình bình hành
=> DC = BN => (DC + AB)/2 = (BN + AB)/2 = AN/2 (1)
Ta có: M thuộc [AN]; AM = (DC + AB)/2 (2)
(1); (2) => AM = AN/2 => M là trung điểm của AN = >CM là trung tuyến \(\Delta\)ACN
Lại có: AC vuông góc BD; BD // CN => AC vuông góc CN (Qh //; vuông góc)
Xét \(\Delta\)ACN vuông đỉnh C có trung tuyến CM (cmt) => CM = AM => \(\Delta\)CAM cân tại M
=> ^MAC = ^MCA. Mà ^MAC = ^DCA (Do AB//CD) nên ^MCA = ^DCA
Vậy nên CA là phân giác ^MCD (đpcm).