Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.
Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.
Vậy hàm số đã cho là y = √3x + 5.
Bài giải:
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.
Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.
Vậy hàm số đã cho là y = √3x + 5
a, tự vẽ nha bạn
b1, ta có AB có hàm số y= ax+b (*) .mà nó đi qua A(-2/3 ,-7)
=> thay x=-2/3 và y= -7 vào (*) có: -7 = -2/3a +b (1)
tương tự với điểm B(-2 ,1) => 1= -2a+b (2)
từ (1) và (2) ta có hệ :\(\hept{\begin{cases}-\frac{2}{3}a+b=-7\\-2a+b=1\end{cases}}\)
giải hệ ta dc : a=... , b=... (dùng máy tính casio fx 500 hay 570 chức năng EQN )
=> AB có dạng : y = ..x + ... (ahihi lười ấn)
b2, theo câu b , AB có dạng ... xét pt hoành độ gđ của AB và parabol (p)
-2x2 = ( vế ...x +... ở trên)
giải pt bậc 2 ra hai nghiệm x1 , x2 =>hai nghiệm y1, y2 tương ứng (bằng cách thay x vào hs (p) hoặc AB tính ra y)
=> tọa độ 2 giao điểm C(x1 , y1) ,D(x2, y2)
c,( quá dễ)
ta có điểm E( xe, ye) là điểm cần tìm .
mà tổng tung và hoành độ của nó = -6
=> xe+ye = -6 (3)
mà điểm E thuộc đths (p)
=> ye = -2xe2 (4)
thay (4) vào (3) ta có pt bậc 2:
-2x2 + x = -6
giải pt ta thu đc xe=... => ye= ... ( auto lười ấn )
=> E ( ... , ... )
xooooooooooooooooooooooooooog !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Bài 1:
a/ Bạn tự vẽ
b/ Phương trình tọa độ giao điểm:
\(\left\{{}\begin{matrix}y=\frac{3}{2}x-2\\y=-\frac{1}{2}x+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Bài 2:
Gọi pt đường thẳng có dạng \(y=ax+b\)
a/ \(\left\{{}\begin{matrix}\frac{2}{3}.a+b=0\\0.a+b=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{9}{2}\\b=3\end{matrix}\right.\) \(\Rightarrow y=-\frac{9}{2}x+3\)
b/ \(\left\{{}\begin{matrix}a=2\\\frac{1}{3}.a+b=\frac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow y=2x+\frac{2}{3}\)
c/ \(\left\{{}\begin{matrix}a=3\\\frac{1}{2}a+b=\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\) \(\Rightarrow y=3x+2\)
d/ \(\left\{{}\begin{matrix}a+b=2\\3a+b=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\) \(\Rightarrow y=2x\)