K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

Bài 2. a/ \(1\le a,b,c\le3\)  \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\)\(\left(c-1\right).\left(c-3\right)\le0\)

Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)

\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)

Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1

b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\) 

Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)

Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay

\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)

2 tháng 1 2017

chẵng biết

18 tháng 7 2016

1) \(E^2=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+y^2\right)-4xy}{2\left(x^2+y^2\right)+4xy}=\frac{5xy-4xy}{5xy+4xy}=\frac{xy}{9xy}=\frac{1}{9}\)

\(\Rightarrow E=\frac{1}{3}\)(vì x>y>0)

2) Ta có \(x+y+z=0\Rightarrow x+y=1-z\)

Lại có : \(1=\left(x+y+z\right)^2=1+2\left(xy+yz+xz\right)\Rightarrow2xy+2yz+2xz=0\Rightarrow2xy=-2z\left(x+y\right)=-2z\left(1-z\right)\)Thay vào \(x^2+y^2+z^2=1\) được : 

\(\left(x+y\right)^2-2xy+z^2=1\)\(\Leftrightarrow\left(1-z\right)^2-2z\left(1-z\right)+z^2=1\Leftrightarrow4z^2-4z=0\Leftrightarrow z\left(z-1\right)=0\Leftrightarrow\orbr{\begin{cases}z=0\\z=1\end{cases}}\)

Với z = 0 => x + y = 1 và x2+y2 = 1 => x = 0 , y = 1 hoặc x = 1 , y =0

=> A = 1

Tương tự với z = 1 , ta cũng có x = 0 , y = 0 => A = 1

22 tháng 4 2017

Bài 1 : x = 0 ; y = 2

Bài 2 Max A = 1 <=> x = 0 , y = 1 hoặc x = 1 , y = 0

Min A = 0,5 <=> x = y = 0,5

30 tháng 4 2020

sol của tớ :3

Nếu y=0 thì x2=1 => P=2

Nếu y\(\ne\)0 .Đặt \(t=\frac{x}{y}\)

\(P=\frac{2\left(x^2+6xy\right)}{1+2xy+2y^2}=\frac{2\left(x^2+6xy\right)}{x^2+2xy+3y^2}=\frac{2\left[\left(\frac{x}{y}\right)^2+6\cdot\frac{x}{y}\right]}{\left(\frac{x}{y}\right)^2+2\frac{x}{y}+3}=\frac{2\left(t^2+6t\right)}{t^2+2t+3}\)

\(\Rightarrow P.t^2+2P\cdot t+3P=2t^2+12t\)

\(\Leftrightarrow t^2\left(P-2\right)+2t\left(P-6\right)+3P=0\)

Xét \(\Delta'=\left(P-2\right)^2-3P\left(P-6\right)=-2P^2-6P+36\ge0\)

\(\Leftrightarrow-6\le P\le3\)

Dấu bằng xảy ra khi:

Max:\(x=\frac{3}{\sqrt{10}};y=\frac{1}{\sqrt{10}}\left(h\right)x=\frac{3}{-\sqrt{10}};y=\frac{1}{-\sqrt{10}}\)

Min:\(x=\frac{3}{\sqrt{13}};y=-\frac{2}{\sqrt{13}}\left(h\right)x=-\frac{3}{\sqrt{13}};y=\frac{2}{\sqrt{13}}\)

21 tháng 9 2019

khó ha

16 tháng 2 2020

\(1=x+y=\frac{x}{2}+\frac{x}{2}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge5\sqrt[5]{\left(\frac{x}{2}\right)^2\left(\frac{y}{3}\right)^3}\)

\(\Leftrightarrow1\ge5\sqrt[5]{\frac{x^2y^3}{108}}\Rightarrow\frac{1}{5}\ge\sqrt[5]{\frac{x^2y^3}{108}}\Rightarrow\frac{x^2y^3}{108}\le\frac{1}{3125}\)

\(\Rightarrow x^2y^3\le\frac{108}{3125}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\x+y=1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{3}{5}\end{cases}}}\)
Vậy...

29 tháng 9 2020

Cộng vế theo vế

=> \(x^2+x+y^2+y+z^2+z=x^2+y^2+z^2\)

=> \(x+y+z=0\)=> A = 0 

\(x=\left(y^2-x^2\right)=\left(y-x\right)\left(y+x\right)=\left(y-x\right).\left(-z\right)=\left(x-y\right).z\)

\(y=\left(z-y\right)\left(z+y\right)=\left(z-y\right).-x=x\left(y-z\right)\)

\(z=y\left(z-x\right)\)

=> \(xyz=\left(x-y\right)\left(y-z\right)\left(z-x\right).xyz\)

=> B = 1

Ta có (x+y)xy=x2+y2-xy

=> \(\frac{1}{x}+\frac{1}{y}=\frac{1}{x^2}+\frac{1}{y^2}-\frac{1}{xy}\)

<=>\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2+\frac{3}{4}\left(\frac{1}{x}-\frac{1}{y}\right)^2\ge\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2\)

<=> \(0\le\frac{1}{x}+\frac{1}{y}\le4\)

mà \(A=\frac{1}{x^3+y^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^2\le16\)

Vậy Max A =16 khi \(x=y=\frac{1}{2}\)

12 tháng 5 2017

Ta có: 

2x+xy=4 

=> xy=4-2x

A=x2y=x.(xy)

=> A=x(4-2x)=4x-2x2

=> A=2-2+4x-2x2 = 2-2(x2-2x+1)

=> A=2-2(x-1)2

Ta thấy: (x-1)2\(\ge\)0 với mọi x

=> A \(\le\)2 với mọi x

=> Giá trị lớn nhất của A là 2

Đạt được khi x-1=0 hay x=1 và y=2