K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

3A = 3 + 32 + 33 + ..... + 32004

=> 2A = 3A - A = 3 + 32 + 33 + ... +32004 - 30 - 3 - 32  - ... - 32003

=> 2A = 32004 - 1 

=> 2A = ( 312 )167  - 1 = 531441167 - 1 chia hết cho 531440 

mà 531440 = 520 x 1022

=> 2A chia hết cho 520

=> A chia hết cho 520

20 tháng 8 2018

SAI RỒI BẠN ƠII

15 tháng 1 2018

Bài 1:

Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y 

Vì 6x+11y chia hết cho 31, 31y chia hết cho 31

=> 6(x+7y) chia hết cho 31

Mà (6;31)=1 => x+7y chia hết cho 31

Bài 3:

a,n2+3n-13 chia hết cho n+3

=>n(n+3)-13 chia hết cho n+3

=>13 chia hết cho n+3

=>n+3 E Ư(13)={1;-1;13;-13}

=>n E {-2;-4;10;-16}

d,n2+3 chia hết cho n-1

=>n2-n+n-1+4 chia hết cho n-1

=>n(n-1)+(n-1)+4 chia hết cho n-1

=>4 chia hết cho n-1

=>n-1 E Ư(4)={1;-1;2;-2;4;-4}

=>n E {2;0;3;-1;5;-3}

10 tháng 11 2017

B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3 

b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)

Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6

+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7

Vậy a^7-a chia hết cho 7

10 tháng 11 2017

b,  a^7-a=a(a^6-1) 
=a(a^3+1)(a^3-1) 
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1) 
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1) 
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1) 
+7a (a-1) (a+1) (a^2+a-1) 
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
+7a (a-1) (a+1) (a^2+a-1) 
+7a (a-1) (a+1) (a^2-a-6) 
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7) 
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7 
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)] 
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. 
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7 

23 tháng 6 2015

Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)\(3^n-2^n\)\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

 = \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)\(3^n\times10-2^{n-1}\times10\)

= 10 \(\times\left(3^n+2^{n+1}\right)\)

chia hết cho 10

Bài 2 : 

\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)

\(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)

chia het cho 100

12 tháng 4 2018

ehdhfhdfh

15 tháng 1 2018

Bài 1

Vì 6x+11y chia hết cho 31

=> 6x+11y+31y chia hết cho 31 (31y chia hết cho 31)

=> 6x+42y chia hết cho 31

=> 6(x+7y) chia hết cho 31

Mà (6;31)=1 nên x+7y chia hết cho 31 (đpcm)

15 tháng 1 2018

Bài 3

n 2 + 3n - 13 chia hết cho n + 3

=>n(n+3)-13 chia hết cho n+3

=>13 chia hết cho n+3

=>n+3 thuộc Ư(13)={-1;1;-13;13}

=>n thuộc{-4;-2;-16;10}

n 2 + 3 chia hết cho n - 1

ta có: n-1 chia hết cho n-1

=>(n-1)(n+1) chia hết cho n-1

=>n^2+n-n-1 chia hết cho n-1

=>n^2-1 chia hết cho n-1 mà n2 + 3 chia hết cho n - 1

=>(n^2+3)-(n^2-1) chia hết cho n-1

=>4 chia hết cho n-1

=>n-1 thuộc Ư(4)={-1;1;-2;2;-4;4}

=> n thuộc {0;2;-1;3;-3

2 tháng 10 2018

Bài này Linh làm được nì

2 tháng 10 2018

Ta có: 5a = 8b = 20c

mà BCNN(5,8,20) = 2. 5 = 40

nên \(\frac{5a}{40}=\frac{8b}{40}=\frac{20c}{40}\)

\(=>\frac{a}{8}=\frac{b}{5}=\frac{c}{2}\)

Theo tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{8}=\frac{b}{5}=\frac{c}{2}=\frac{a-b-c}{8-5-2}=\frac{3}{1}=3\)

\(=>a=3\cdot8=24\)

             \(b=3\cdot5=15\)

              \(c=3\cdot2=6\)

Thay vào biểu thức, ta có: \(\left[\left(a-b\right)^2-c^3\right]\)\(=\left[\left(24-15\right)^2-6^3\right]\)

                                                                                      \(=-135⋮45\)

Vậy\(\left[\left(a-b\right)^2-c^3\right]⋮45\) khi a=24 ; b=15 ; c= 6

27 tháng 11 2017

Bạn ơi đề bài 1  và bài 2 đều thiếu rùi kìa

10 tháng 12 2017

Bài 1 :

7^6+7^5-7^4=7^4.49+7^4.7-7^4.1
                   =7^4.(49+7-1)
                   =7^4.55
Vì 7^4.55 chia hết 5 Vậy 7^6+7^5-7^4 chia hết 5