K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

a) Từ giả thiết => a1+a2+a3<3a3

a4+a5+a6<3a6

a7+a8+a8<3a9

=>\(a_1+a_2+...+a_9< 3\left(a_3+a_6+a_9\right)\Leftrightarrow\dfrac{a_1+a_2+...+a_9}{a_3+a_6+a_9}< 3\left(ĐPCM\right)\)

b)Câu này phải là \(\ge\) chứ không phải > nha bạn:

Ta có:

(a-b)2\(\ge\)0 với mọi ab

<=>a2+b2\(\ge\)2ab(1) với mọi ab

Dấu "=" xảy ra khi và chỉ khi (a-b)2=0 <=> a=b

Chứng minh tương tự ta được a2+1\(\ge\)2a(2) ; b2+1\(\ge\)2b(3)

Dấu "=" xảy ra khi và chỉ khi a=1 ; b=1

Cộng vế với vế của (1);(2) và (3):

2(a2+b2+1)\(\ge\)2(ab+a+b)

<=> a2+b2+1\(\ge\)ab+a+b

Dấu bằng xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}a=b\\b=1\\a=1\end{matrix}\right.\Leftrightarrow}a=b=1\)

12 tháng 2 2020

Ta có: \(\frac{a}{b}\)<\(\frac{c}{d}\)-->ad<bc (b,d>0)

Gỉa sử \(\frac{a}{b}\)<\(\frac{ab+cd}{b^2+d^2}\) đúng

a (b2+d2)<b(ab+cd) (b,d>0)

<=> ab2+ad2<ab2+bcd

<=> ad2-bcd<0

<=> d(ad-bc)<0 (*)

mà d>0; ad<bc(cmt)--> ad-bc<0

nên (*) đúng.

cm tiếp vế kia cũng như thế rồi kết luận

25 tháng 6 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2=2^2=4\)

\(\Rightarrow a^2+b^2\ge2\)

Đẳng thức xảy ra khi \(a=b=1\)

Bài 3:

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(P=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{2}=2\)

Đẳng thức xảy ra khi \(a=b=1\)


NV
16 tháng 11 2019

\(2a^2+2b^2+2ab+2ac+2bc< 0\)

\(\Leftrightarrow\left(a+b+c\right)^2+a^2+b^2-c^2< 0\)

\(\Leftrightarrow a^2+b^2< c^2-\left(a+b+c\right)^2\le c^2\)

\(\Rightarrow a^2+b^2< c^2\)

15 tháng 7 2016

Ai trả lời giúp mk đi khocroi

15 tháng 7 2016

Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(3=1.3=\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow a+b+c\le\sqrt{3}\) (1)

Lại có: \(\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}\) .Cộng các bất đẳng thức theo vế được: \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow ab+bc+ac\le1\) (2)

Cộng (1) và (2) theo vế ta có điều phải chứng minh.

22 tháng 2 2016

a) \(\begin{cases}x^2-5x+6<0\\ax+4<0\end{cases}\)

bất phương trình đầu có nghiệm là 1 < x < 6

Xét a = 0 => bpt thứ hai vô nghiệm (4 < 0) => Hệ vô nghiệm

Xét a > 0 => bpt thứ hai có nghiệm là x < -4/a < 0 => kết hợp với 1 < x < 6 thì hệ vô nghiệm

Xét a < 0 => bpt thứ hai có nghiệm là x > -4/a. Kết hợp với 1 < x < 6 thì để hệ có nghiệm thì -4/a <6 => -4 > 6a => a < -4/6 = -2/3, thỏa mãn đk a <0

ĐS: a < -2/3

b) bpt thứ nhất có nghiệm là x > 1.

bpt thứ hai có dạng: (x - a)2 +1 - a2 < 0; (x - a)2 < a2 - 1

Nếu a2 - 1 < 0, tức là -1 < a < 1 thì bpt trên vô nghiệm,

Nếu a < -1 hoặc a > 1 thì bpt trên có nghiệm là \(-\sqrt{a^2-1}+a\le x\le\sqrt{a^2-1}+a\)

Kết hợp với nghiệm x > 1 thì để hệ có nghieemh ta phải có \(\sqrt{a^2+1}+a>1\) => \(\sqrt{a^2+1}>1-a\), nếu a>1 thì luôn đúng, còn nếu a < -1 thì a2 + 1 > 1 - 2a + a2 =>a >0 (mâu thuẫn với a < -1)

KL: với a > 1 thì hệ bpt có nghiệm