Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= x^2-6x+10
A=x^2-3x-3x+9+1
A=x(x-3)-3(x-3)+1
A=(x-3)(x-3)+1
A=(x-3)^2+1
Vì (x-3)^2 \(\ge\)0\(\forall x\)
->(x-3)^2+1\(\ge\)1
=>ĐPCM
1. a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow\left(x-3\right)^2+1\ge1\)
hay \(A\ge1\)\(\Rightarrow\)A luôn dương ( đpcm )
b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(=\left(x-1\right)^2+\left(3y-1\right)^2+1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(3y-1\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\forall x,y\)
hay \(B\ge1\)\(\Rightarrow\)B luôn dương ( đpcm )
2/Theo đề ta có:
\(x^2+y^2=a^2+b^2\)
\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)(1)
Lại có: \(x-a=b-y\) Thay vào (1) đc
\(\left(x-a\right)\left(x+a\right)-\left(x-a\right)\left(b+y\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a-b-y\right)=0\Rightarrow x=a\)(2)
Tương tự ta cũng có:
\(\left(b-y\right)\left(x+a\right)-\left(b-y\right)\left(b+y\right)=0\)
\(\Leftrightarrow\left(b-y\right)\left(x+a-b-y\right)=0\Rightarrow b=y\)(3)
(2) và (3) có ĐPCM
Bạn tham khảo câu trả lời ở đây nhé:
http://pitago.vn/question/cho-a-b-c-doi-mot-khac-nhau-thoa-man-abacbc-1-tinh-gia-tr-40688.html
áp dụng bđt cauchy-shwarz dạng engel
\(\text{ Σ}_{cyc}\frac{a^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}\)
Ta có hđt \(\text{ Σ}_{cyc}a^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà a+b+c khác 0 nên a = b = c
\(\Rightarrow N=1\)
#)Giải :
a) Để C/m a và b là hai số đối nhau => a + b = 0
Ta có : \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Leftrightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab+b^2=0\)
\(\Leftrightarrow a^2+2ab+b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0a\Leftrightarrow a+b=0\)
\(\Rightarrowđpcm\)
1/ a/ ta có:
m^4 ≥ 0 ; m^2 ≥ 0; m^4 ≥m^2 => m^4 - m^2 + 1 ≥ 0 (với mọi m)
b/ để 1 - 3/(p^2+1) nhỏ nhất thì 3/(p^2+1) nhỏ nhất và 3/(p^2+1) > 0 => p^2 + 1 là ước > 0 của 3
đặt A = 1 - 3/(p^2+1)
=> *) p^2+1 = 3 <=> p^2 = 2 <=> p = \(\pm\)√2 => A = 0
*) p^2 + 1 = 1 <=> p = 0 => A = -2
Vậy GTNN A = -2 khi p=0
n^2 (n-p) = |m|
|m| ≥ 0; n^2 ≥ 0
=> n - p ≥ 0
=> n ≥ p ; theo đề phải có 1 số dương, 1 số 0, 1 số âm=>n >p
*)Nếu m = 0 => n^2 (n-p) = 0
=> n^2 = 0 => n = m=0 vô lí (loại)
hoặc n - p =0 => n = p vô lí (loại)
*) Nếu m là 1 số dương:
=> n^2 ( n-p) > 0 => n # 0 => p = 0 => n là số âm (vô lí)
*) Nếu m là 1 số âm:
=> n^2 ( n-p) > 0 => n # 0 => p = 0 => n là số dương (nhận)
Vậy m là số âm, n là số dương, p = 0