Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 7h12'=7,2h
Trong 1 giờ 2 vòi nước cùng chảy thì được \(\frac{1}{7,2}=\frac{5}{36}\)(bể nước)
Nêu gọi thời gian chảy của vòi một là a thì vòi thứ 2 là a+6
Trong 1 giờ vòi thứ nhất chảy được 1/a
Trong 1 giờ vòi thứ hai chảy được 1/a+6
Ta có phương trình
1/a+ 1/a+6=5/36
Giải phương trình rồi tìm a đi nha bn,mình lười quá.
Gọi thời gian 2 vòi chảy đầy bể là x(h); y(h)
Sau 1 giờ cả 2 vòi chảy được \(\frac{1}{x}\)+\(\frac{1}{y}\)bể
Sau 45 phút = 3/4 giờ cả 2 vòi chảy được 2/5 bể nên trong 1 giờ cả 2 vòi chảy được 1. 2/5 / 3/4 = 2/5 . 4/3= 8/15 bể
=> 1/x + 1/y = 8/15 ( 1)
Nếu chảy riêng thì vòi 2 chảy chậm hơn 2 giờ => y = x+2 (2)
Từ 1 và 2 ta có: \(\frac{1}{x}\)+\(\frac{1}{x+2}\)=\(\frac{8}{15}\)
Sau bn tự làm nha
Nguồn: gg
Gọi thời gian chảy riêng của vòi A là x
=>Thời gian chảy riêng của vòi B là x+3
Theo đề, ta có: \(\dfrac{1}{x}+\dfrac{1}{x+3}=1:3,6=\dfrac{5}{18}\)
=>\(\dfrac{x+3+x}{x\left(x+3\right)}=\dfrac{5}{18}\)
=>5(x^2+3x)=18(2x+3)
=>5x^2+15x-36x-54=0
=>5x^2-21x-54=0
=>x=6
=>Thời gian chảy riêng của vòi B là 9h
Lời giải:
Gọi vận tốc dự định là $a$ km/h
Thời gian dự định: $\frac{AB}{a}$ (giờ)
Thời gian khi tăng vận tốc 8km/h: $\frac{AB}{a+8}$ (giờ)
Thời gian khi giảm vận tốc 4km/h: $\frac{AB}{a-4}$ (giờ)
Ta có:
\(\left\{\begin{matrix}
\frac{AB}{a}-\frac{AB}{a+8}=1\\
\frac{AB}{a-4}-\frac{AB}{a}=\frac{2}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
\frac{8AB}{a(a+8)}=1\\
\frac{4AB}{a(a-4)}=\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow \frac{2(a-4)}{a+8}=\frac{3}{2}\) (chia 2 pt cho nhau theo vế)
$\Rightarrow a=40$ (km/h)
$AB=\frac{a(a+8)}{8}=\frac{40.48}{8}=240$ (km)
Thời gian dự định: $\frac{AB}{a}=\frac{240}{40}=6$ (giờ)
Bài 9:
Đổi \(4h48'=\dfrac{24}{5}h\)
Gọi x(giờ) và y(giờ) lần lượt là thời gian vòi I và vòi II chảy một mình đầy bể(Điều kiện: \(x>\dfrac{24}{5};y>\dfrac{24}{5}\))
Trong 1 giờ, vòi I chảy được:
\(\dfrac{1}{x}\)(bể)
Trong 1 giờ, vòi II chảy được:
\(\dfrac{1}{y}\)(bể)
Trong 1 giờ, hai vòi chảy được:
\(1:\dfrac{24}{5}=\dfrac{5}{24}\)(bể)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\)(1)
Vì khi vòi I chảy trong 4 giờ và vòi II chảy trong 3 giờ thì hai vòi chảy được \(\dfrac{3}{4}\) bể nên ta có phương trình:
\(\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{3}{4}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{4}{y}=\dfrac{5}{6}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{1}{x}=\dfrac{5}{24}-\dfrac{1}{12}=\dfrac{1}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=12\end{matrix}\right.\)(thỏa ĐK)
Vậy: Vòi thứ 1 cần 8 giờ để chảy một mình đầy bể
Vòi thứ 2 cần 12 giờ để chảy một mình đầy bể
Bài 10:
Đổi \(7h12'=\dfrac{36}{5}h\)
Gọi x(giờ) và y(giờ) lần lượt là thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình(Điều kiện: \(x>\dfrac{36}{5};y>\dfrac{36}{5}\))
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được: \(1:\dfrac{36}{5}=\dfrac{5}{36}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\)(1)
Vì khi người thứ nhất làm trong 4 giờ và người thứ hai làm trong 3 giờ thì được 50% công việc nên ta có phương trình:
\(\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{1}{2}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{4}{y}=\dfrac{5}{9}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{18}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=18\\\dfrac{1}{x}=\dfrac{5}{36}-\dfrac{1}{18}=\dfrac{1}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=18\end{matrix}\right.\)(thỏa ĐK)
Vậy: Người thứ nhất cần 12 giờ để hoàn thành công việc khi làm một mình
Người thứ hai cần 18 giờ để hoàn thành công việc khi làm một mình