K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2015

Ta có:   \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}\)

=>\(\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}=\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{24}=5\)

=> x=5.33=165

     y=5.4=20

     z=5.5=25

 

9 tháng 8 2016

Bài này quá dễ luôn

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

10 tháng 3 2020

- Ta có: \(x+y+z=0\)

      \(\Leftrightarrow x+y=-z\)

      \(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\)

      \(\Leftrightarrow x^2+y^2+2xy=z^2\)

      \(\Leftrightarrow x^2+y^2-z^2=-2xy\)

- CMT2\(y^2+z^2-x^2=-2yz\)

             \(z^2+x^2-y^2=-2zx\)

- Thay \(x^2+y^2-z^2=-2xy,\)\(y^2+z^2-x^2=-2yz,\)\(z^2+x^2-y^2=-2zx\)vào đa thức P

- Ta có: \(P=\frac{x^2}{-2yz}+\frac{y^2}{-2zx}+\frac{z^2}{-2xy}\)

     \(\Leftrightarrow P=\frac{x^3+y^3+z^3}{-2xyz}\)

- Đặt \(a=x^3+y^3+z^3\)

- Ta lại có: \(a=\left(x+y\right)^3+z^3-3xy.\left(x+y\right)\)

           \(\Leftrightarrow a=\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3ab.\left(x+y\right)\)

- Mặt khác: \(x+y+z=0\)

            \(\Leftrightarrow x+y=-z\)

- Thay \(x+y+z=0,\)\(x+y=-z\)vào đa thức a

- Ta có: \(a=-3xy.\left(-z\right)=3xyz\)

- Thay \(a=3xyz\)vào đa thức P

- Ta có: \(P=\frac{3xyz}{-2xyz}=-\frac{3}{2}\)

Vậy \(P=-\frac{3}{2}\)

7 tháng 3 2021

Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)

=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)

=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))

=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)

Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)

12 tháng 12 2019

\(Đặt x / 2 = y / 5 = z / 7 = k \)

\(\Rightarrow\)\(x = 2k ; y = 5k ; z = 7k\)

\(A = ( 4x - y + z ) / ( x + 2y - z )\)

\(A = ( 4 . 2k - 5k + 7k ) / ( 2k + 2 . 5k - 7k ) \)

\(A = ( 8k - 5k + 7k ) / ( 2k + 10k - 7k )\)

\(A = 10 k / 5k\)

\(A = 2\)

1 tháng 1 2016

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{x}{\frac{11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}\)

Theo t/c dãy TSBN:

\(\frac{x}{\frac{11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}=\frac{y+z-x}{\frac{2}{9}+\frac{5}{18}-\frac{11}{6}}=\frac{-120}{-\frac{4}{3}}=90\)

=> \(\frac{x}{\frac{11}{6}}=90\Rightarrow x=90.\frac{11}{6}=165\)

=> \(\frac{y}{\frac{2}{9}}=90\Rightarrow y=90.\frac{2}{9}=20\)

Vậy x+y = 165+20 = 185.