Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi số tiền lãi 3 người nhận được sau 1 tháng lần lượt là $a,b,c$
Vì tiền lãi tỉ lệ thuận với tiền vốn nên tiền lãi tỉ lệ với $2,3,5$
Hay $\frac{a}{2}=\frac{b}{3}=\frac{c}{5}$
Theo bài ra ta cũng có: $a+b+c=36$
Áp dụng TCDTSBN:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{36}{12}=3$
$\Rightarrow a=3.2=6; b=3.3=9; c=3.5=15$ (triệu đồng)
#)Giải :
Gọi số tiền lãi của ba nhà sản xuất đó là x,y,z
Theo đề bài, ta có :
\(\frac{x}{7}=\frac{y}{8}=\frac{z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{7}=\frac{y}{8}=\frac{z}{9}=\frac{x+y+z}{7+8+9}=\frac{240}{24}=10\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=10\\\frac{y}{8}=10\\\frac{z}{9}=10\end{cases}\Rightarrow\hept{\begin{cases}x=70\\y=80\\z=90\end{cases}}}\)
Vậy số tiền lãi của ba người đó là 70 triệu đồng, 80 triệu đồng và 90 triệu đồng
- gọi số tiền lãi lần lượt là x,y,z,neen suy ra ta có:x/7,y/8,z/9 và x+y+z=240
- Aps dụng tính chất dãy tỉ số bằng nhau:x/7,y/8,z/9=x+y=z/7+8+9=240/24=10
- x/7=x=10*7=70
- y/8=y=10*8=80
- z/9=z=10*9=90
- Gọi a, b, c theo thứ tự là số tiền góp vốn của ba người A, B, C.
- Lập được: và
- Áp dụng tính chất dãy tỉ số bằng nhau.
Ta có:
- Tính được: a = 21; b = 35; c = 49
- Trả lời: Vậy: Người A góp vốn 21 triệu
Người B góp vốn 35 triệu
Người C góp vốn 49 triệu
3 + 5 + 7 = 15
105 : 15 = 7
A = 7 x 3 = 21 (triệu đồng)
B = 7 x 5 = 35 (triệu đồng)
C = 7 x 7 = 49 (triệu đồng)
gọi số tiền vốn lần lượt là a, b, c(đồng)
đk: a, b, c<720
a, b, c thuộc N*
Theo bài ra, ta có:
a/7=b/9=c/8 và a+b+c= 720
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
a/7=b/8=c/9=a+b+c/7+8+9=720/24=30
a/7=30=>a=210
b/8=30=>b=240
c/9=30=>c=270
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=300.000.000\)
Do đó: a=300000000; b=600000000; c=900000000