K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2018

Gọi x,y,z lần lượt là ba đội máy san 

Ta có: 8x=6y=4z và z-y=8

\(\Rightarrow\)8x/24=6y/24=4z/24 và   z-y=8

\(\Rightarrow\)x/3=y/4=z/6 và z-y=8

ADTCDTSBN, ta có:

y/4=z/6 =z-y/6-4=8/2=4

x/3=4 thì x =12

y/4=4 thì y=16

z/6=4 thì z=24

Vậy: đội 1 có 12 máy, đội 2 có 16 máy, đội 3 có 24 máy

14 tháng 12 2018

Gọi số máy của 3 đội 1,2,3 là x,y,z (máy) x,y,z\(\inℕ^∗\)

TBR, ta có : số máy và thời gian là 2 ĐLTLN

\(\Rightarrow\)8x=6y=4z

\(\Rightarrow\frac{x}{\frac{1}{8}}\)=\(\frac{z}{\frac{1}{6}}=\frac{y}{\frac{1}{4}}\)

Ấp dụng tính chất của dãy tỉ số bằng nhau .TC

   \(\frac{x}{\frac{1}{8}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{4}}=\)\(\frac{z}{\frac{1}{4}}-\frac{y}{\frac{1}{6}}=\frac{8}{\frac{1}{12}}=96\)

\(\Rightarrow\frac{x}{\frac{1}{8}}=96\Rightarrow x=\frac{1}{8}.96=12\left(TM\right)\)

\(\Rightarrow\frac{y}{\frac{1}{6}}=96\Rightarrow y=\frac{1}{6}.96=16\left(TM\right)\)

MÀ \(\frac{z}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}\Rightarrow\frac{z}{\frac{1}{4}}=96\Rightarrow z=\frac{1}{4}.96=24\left(TM\right)\)

Vậy số máy của 3 đội 1,2,3 lần lượt là 12,16,24 máy

3 tháng 8 2015

bấm vào đây nha bn : /hoi-dap/question/10907.html

12 tháng 12 2016

1 . Trong mot ngay doi 1 lam duoc 1/4 cong viec 
Trong mot ngay doi 2 lam duoc 1/6 cong viec 
Vay trong mot ngay ca 2 doi lam duoc : 
1/4 + 1/6 = 3/12 + 2/12 = 5/12 cong viec 
Do doi 3 co so nguoi = 1/5 tong so nguoi cua hai doi. 1 va 2 , nen trong mot ngay doi 3 lam duoc 1/5 cong viec mà doi 1 và doi 2 lam duoc . 
trong mot ngay doi 3 lam duoc : 
5/12 : 5 = 1/12 cong viec 
So ngay doi 3 lam xong cong viec la : 
1 : 1/12 = 1 x 12/1 = 12 ngay

2 . 

12 tháng 12 2016

bài 2: tóm tắt 

8 người : 40 ngày 

10 người : ....ngày

10 người làm công việc đó trong số ngày là:

40x8:10=32<ngày>

đáp số : 32 ngày

19 tháng 11 2016

Gọi a,b,c là số máy của mỗi đội

Vì số máy càng tăng thì số ngày càng giảm và ngược lại

nên a,b,c tỉ lệ nghịch với 3,4,6

=> \(\frac{a}{\frac{1}{3}}\)=\(\frac{b}{\frac{1}{4}}\)=\(\frac{c}{\frac{1}{6}}\) và a-b = 4

Áp dụng tính chất dãy tỉ số bằng nhau

Ta có: \(\frac{a}{\frac{1}{3}}\)=\(\frac{b}{\frac{1}{4}}\)=\(\frac{c}{\frac{1}{6}}\)=\(\frac{a-b}{\frac{1}{3}-\frac{1}{4}}\)=\(\frac{4}{\frac{1}{12}}\)=48

\(\frac{a}{\frac{1}{3}}\)=48 => a = 16

\(\frac{b}{\frac{1}{4}}\)=48 =>: b = 12

\(\frac{c}{\frac{1}{6}}\)=48 => c = 8

Vậy số máy mỗi đội lần lượt là 16 máy; 12 máy; 8 máy

6 tháng 12 2016

Gọi \(a,b,c\) lần lượt là số máy của đội \(I,II,III\)

Theo đề , ta có : \(a-b=4\)

Do số máy và số ngày là hai đại lượng tỉ lệ nghịch với nhau nên ta có :

\(3a=4b=6c\)

\(\Rightarrow\frac{3a}{12}=\frac{4b}{12}=\frac{6c}{12}\)

\(\Rightarrow\frac{a}{4}=\frac{b}{3}=\frac{c}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{a}{4}=\frac{b}{3}=\frac{c}{2}=\frac{a-b}{4-3}=\frac{4}{1}=4\)

\(\Rightarrow a=16;b=12;c=8\)

Vậy số máy cày của đội \(I,II,III\) lần lượt là \(16;12;8\) máy .

 

18 tháng 11 2016

Với cùng 1 klượng việc như nhau thì số máy và thời gian hoàn thành công việc là 2 ĐLTLN.

Gọi số máy của đội 1,2,3 lần lượt là a,b,c

Vì chúng là 2 ĐLTLN nên ta có: a4=b6=c8=>a/(1/4)=b/(1/6)=c/(1/8) và a-c=12
TTCDTSBN, ta có: a/(1/4)=b/(1/6)=c/(1/8)=(a-c)=(1/4-1/8)=12/0,125=96

khi đó: a/(1/4)=96=>a=24; b/(1/6)=96=>b=16; c/(1/8)=96=>c=12

Vậy số máy của 3 đội lần lượt là 24,16,12.
  

Gọi x;y;z lần lượt của ba đội (x;y;z>0)

Theo đầu bài ta thấy: số máy tỉ lệ nghịch với số ngày hoàn thành công việc

=> x.4=y.6=z.8 và x-y=2

=> x/6=(y/4);(y/8)=z/6

=> x/48=y/32=z/24

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

x/48=y/32=z/24=(x-y)/(48-32)=2/16=0,125

Suy ra: x/48=0,125; x= 6

y/32=0,125; y= 4

z/24=0,125; z= 3

Vậy số máy của 3 đội là: *đội thứ nhất: 6 máy

*đội thứ hai: 4 máy

*đội thứ ba: 3 máy

18 tháng 4 2017

Một số bài toán về đại lượng tỉ lệ nghịch

5 tháng 12 2017

Theo bài ta có số máy và số ngày của mỗi đội là 2 đại lượng tỉ lệ nghịch nên ta có :

4.x\(_1\)=6.x\(_2\)=8.x\(_3\) và x\(_1\)-x\(_2\)=2

\(\Rightarrow\dfrac{x_1}{\dfrac{1}{4}}=\dfrac{x_2}{\dfrac{1}{6}}=\dfrac{x_3}{\dfrac{1}{8}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{x_1}{\dfrac{1}{4}}=\dfrac{x_2}{\dfrac{1}{6}}=\dfrac{x_3}{\dfrac{1}{8}}=\dfrac{x_1-x_2}{\dfrac{1}{4}-\dfrac{1}{6}}=\dfrac{2}{\dfrac{1}{12}}=24\)

\(\dfrac{x_1}{\dfrac{1}{4}}=24\Rightarrow x_1=24.\dfrac{1}{4}=6\)

\(\dfrac{x_2}{\dfrac{1}{6}}=24\Rightarrow x_2=24.\dfrac{1}{6}=4\)

\(\dfrac{x_3}{\dfrac{1}{8}}=24\Rightarrow x_3=24.\dfrac{1}{8}=3\)

Vậy : Đội một có 6 máy

Đội hai có 4 máy

Đội ba có 3 máy

27 tháng 7 2023

Gọi x, y, z (máy) lần lượt là số mấy san của đội thứ nhất, thứ hai và thứ ba

Vì số máy tỉ lệ nghịch với thời gian hoàn thành công việc nên ta có: 4x = 6y = 8z

Suy ra: \(\dfrac{x}{6}\) =\(\dfrac{y}{4}\) =\(\dfrac{z}{3}\) 

Vì số máy của đội thứ nhất nhiều hơn đội thứ hai 2 máy nên ta có: x−y = 2 (máy)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{6}\)=\(\dfrac{y}{4}\)=\(\dfrac{z}{3}\)=\(\dfrac{x-y}{6-4}\)=\(\dfrac{2}{2}\) =1

Suy ra: x = 1 . 6 = 6; y = 1 . 4 = 4; z = 1 . 3 = 3 (thoả mãn điều kiện)

Vậy số máy san của đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là 6 máy, 4 máy, 3 máy.